Cargando…
Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA
One of the first steps towards elucidating the biological function of a putative transcriptional regulator is to ascertain its preferred DNA-binding sequences. This may be rapidly and effectively achieved through the application of a combinatorial approach, one involving very large numbers of random...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948773/ https://www.ncbi.nlm.nih.gov/pubmed/27428627 http://dx.doi.org/10.1371/journal.pone.0159408 |
_version_ | 1782443328349929472 |
---|---|
author | Van Dyke, Michael W. Beyer, Matthew D. Clay, Emily Hiam, Kamir J. McMurry, Jonathan L. Xie, Ying |
author_facet | Van Dyke, Michael W. Beyer, Matthew D. Clay, Emily Hiam, Kamir J. McMurry, Jonathan L. Xie, Ying |
author_sort | Van Dyke, Michael W. |
collection | PubMed |
description | One of the first steps towards elucidating the biological function of a putative transcriptional regulator is to ascertain its preferred DNA-binding sequences. This may be rapidly and effectively achieved through the application of a combinatorial approach, one involving very large numbers of randomized oligonucleotides and reiterative selection and amplification steps to enrich for high-affinity nucleic acid-binding sequences. Previously, we had developed the novel combinatorial approach Restriction Endonuclease Protection, Selection and Amplification (REPSA), which relies not on the physical separation of ligand-nucleic acid complexes but instead selects on the basis of ligand-dependent inhibition of enzymatic template inactivation, specifically cleavage by type IIS restriction endonucleases. Thus, no prior knowledge of the ligand is required for REPSA, making it more amenable for discovery purposes. Here we describe using REPSA, massively parallel sequencing, and bioinformatics to identify the preferred DNA-binding sites for the transcriptional regulator SbtR, encoded by the TTHA0167 gene from the model extreme thermophile Thermus thermophilus HB8. From the resulting position weight matrix, we can identify multiple operons potentially regulated by SbtR and postulate a biological role for this protein in regulating extracellular transport processes. Our study provides a proof-of-concept for the application of REPSA for the identification of preferred DNA-binding sites for orphan transcriptional regulators and a first step towards determining their possible biological roles. |
format | Online Article Text |
id | pubmed-4948773 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49487732016-08-01 Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA Van Dyke, Michael W. Beyer, Matthew D. Clay, Emily Hiam, Kamir J. McMurry, Jonathan L. Xie, Ying PLoS One Research Article One of the first steps towards elucidating the biological function of a putative transcriptional regulator is to ascertain its preferred DNA-binding sequences. This may be rapidly and effectively achieved through the application of a combinatorial approach, one involving very large numbers of randomized oligonucleotides and reiterative selection and amplification steps to enrich for high-affinity nucleic acid-binding sequences. Previously, we had developed the novel combinatorial approach Restriction Endonuclease Protection, Selection and Amplification (REPSA), which relies not on the physical separation of ligand-nucleic acid complexes but instead selects on the basis of ligand-dependent inhibition of enzymatic template inactivation, specifically cleavage by type IIS restriction endonucleases. Thus, no prior knowledge of the ligand is required for REPSA, making it more amenable for discovery purposes. Here we describe using REPSA, massively parallel sequencing, and bioinformatics to identify the preferred DNA-binding sites for the transcriptional regulator SbtR, encoded by the TTHA0167 gene from the model extreme thermophile Thermus thermophilus HB8. From the resulting position weight matrix, we can identify multiple operons potentially regulated by SbtR and postulate a biological role for this protein in regulating extracellular transport processes. Our study provides a proof-of-concept for the application of REPSA for the identification of preferred DNA-binding sites for orphan transcriptional regulators and a first step towards determining their possible biological roles. Public Library of Science 2016-07-18 /pmc/articles/PMC4948773/ /pubmed/27428627 http://dx.doi.org/10.1371/journal.pone.0159408 Text en © 2016 Van Dyke et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Van Dyke, Michael W. Beyer, Matthew D. Clay, Emily Hiam, Kamir J. McMurry, Jonathan L. Xie, Ying Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title | Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title_full | Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title_fullStr | Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title_full_unstemmed | Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title_short | Identification of Preferred DNA-Binding Sites for the Thermus thermophilus Transcriptional Regulator SbtR by the Combinatorial Approach REPSA |
title_sort | identification of preferred dna-binding sites for the thermus thermophilus transcriptional regulator sbtr by the combinatorial approach repsa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948773/ https://www.ncbi.nlm.nih.gov/pubmed/27428627 http://dx.doi.org/10.1371/journal.pone.0159408 |
work_keys_str_mv | AT vandykemichaelw identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa AT beyermatthewd identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa AT clayemily identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa AT hiamkamirj identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa AT mcmurryjonathanl identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa AT xieying identificationofpreferreddnabindingsitesforthethermusthermophilustranscriptionalregulatorsbtrbythecombinatorialapproachrepsa |