Cargando…
Multi-Layer Mechanical Model of Glagov Remodeling in Coronary Arteries: Differences between In-Vivo and Ex-Vivo Measurements
When blood vessels undergo remodeling because of the buildup of atherosclerotic plaque, it is thought that they first undergo compensatory or outward remodeling, followed by inward remodeling: the lumen area stays roughly constant or increases slightly and then decreases rapidly. The second phase of...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948909/ https://www.ncbi.nlm.nih.gov/pubmed/27427954 http://dx.doi.org/10.1371/journal.pone.0159304 |
Sumario: | When blood vessels undergo remodeling because of the buildup of atherosclerotic plaque, it is thought that they first undergo compensatory or outward remodeling, followed by inward remodeling: the lumen area stays roughly constant or increases slightly and then decreases rapidly. The second phase of remodeling is supposed to start after the plaque burden exceeds about 40%. These changes in the vessel were first observed by S. Glagov who examined cross-sections of coronary arteries at different stages of the disease. In this paper, we use a mathematical model based on growth and elasticity theory to verify the main aspects of Glagov’s result. However, both our model and curve-fitting to the data suggest that the critical stenosis is around 20% rather than 40%. Our model and data from the PROSPECT trial also show that Glagov remodeling is qualitatively different depending on whether measurements are taken ex-vivo or in-vivo. Our results suggest that the first outward phase of “Glagov remodeling” is largely absent for in-vivo measurements: that is, the lumen area always decreases as plaque builds up. We advocate that care must be taken when infering how in-vivo vessels remodel from ex-vivo data. |
---|