Cargando…
Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells
The endocytic protein dynamin participates in the formation of actin-based membrane protrusions such as podosomes, pseudopodia, and invadopodia, which facilitate cancer cell migration, invasion, and metastasis. However, the role of dynamin in the formation of actin-based membrane protrusions at the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948956/ https://www.ncbi.nlm.nih.gov/pubmed/27572123 http://dx.doi.org/10.3892/ijo.2016.3592 |
Sumario: | The endocytic protein dynamin participates in the formation of actin-based membrane protrusions such as podosomes, pseudopodia, and invadopodia, which facilitate cancer cell migration, invasion, and metastasis. However, the role of dynamin in the formation of actin-based membrane protrusions at the leading edge of cancer cells is unclear. In this study, we demonstrate that the ubiquitously expressed dynamin 2 isoform facilitates cell migration by stabilizing F-actin bundles in filopodia of the lung cancer cell line H1299. Pharmacological inhibition of dynamin 2 decreased cell migration and filopodial formation. Furthermore, dynamin 2 and cortactin mostly colocalized along F-actin bundles in filopodia of serum-stimulated H1299 cells by immunofluorescent and immunoelectron microscopy. Knockdown of dynamin 2 or cortactin inhibited the formation of filopodia in serum-stimulated H1299 cells, concomitant with a loss of F-actin bundles. Expression of wild-type cortactin rescued the punctate-like localization of dynamin 2 and filopodial formation. The incubation of dynamin 2 and cortactin with F-actin induced the formation of long and thick actin bundles, with these proteins colocalizing at F-actin bundles. A depolymerization assay revealed that dynamin 2 and cortactin increased the stability of F-actin bundles. These results indicate that dynamin 2 and cortactin participate in cell migration by stabilizing F-actin bundles in filopodia. Taken together, these findings suggest that dynamin might be a possible molecular target for anticancer therapy. |
---|