Cargando…

Phosphatidylinositol glycan anchor biosynthesis, class X containing complex promotes cancer cell proliferation through suppression of EHD2 and ZIC1, putative tumor suppressors

We identified phosphatidylinositol glycan anchor biosynthesis, class X (PIGX), which plays a critical role in the biosynthetic pathway of glycosylphosphatidylinositol (GPI)-anchor motif, to be upregulated highly and frequently in breast cancer cells. Knockdown of PIGX as well as reticulocalbin 1 (RC...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakakido, Makoto, Tamura, Kenji, Chung, Suyoun, Ueda, Koji, Fujii, Risa, Kiyotani, Kazuma, Nakamura, Yusuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948962/
https://www.ncbi.nlm.nih.gov/pubmed/27572108
http://dx.doi.org/10.3892/ijo.2016.3607
Descripción
Sumario:We identified phosphatidylinositol glycan anchor biosynthesis, class X (PIGX), which plays a critical role in the biosynthetic pathway of glycosylphosphatidylinositol (GPI)-anchor motif, to be upregulated highly and frequently in breast cancer cells. Knockdown of PIGX as well as reticulocalbin 1 (RCN1) and reticulocalbin 2 (RCN2), which we found to interact with PIGX and was indicated to regulate calcium-dependent activities, significantly suppressed the growth of breast cancer cells. We also identified PIGX to be a core protein in an RCN1/PIGX/RCN2 complex. Microarray analysis revealed that the expression of two putative tumor suppressor genes, Zic family member 1 (ZIC1) and EH-domain containing 2 (EHD2), were upregulated commonly in cells in which PIGX, RCN1, or RCN2 was knocked down, suggesting that this RCN1/PIGX/RCN2 complex could negatively regulate the expression of these two genes and thereby contribute to human breast carcinogenesis. Our results imply that PIGX may be a good candidate molecule for development of novel anticancer drugs for breast cancer.