Cargando…
A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/ https://www.ncbi.nlm.nih.gov/pubmed/26950361 http://dx.doi.org/10.1038/nm.4057 |
_version_ | 1782443384137318400 |
---|---|
author | Jang, Cholsoon Oh, Sungwhan F Wada, Shogo Rowe, Glenn C Liu, Laura Chan, Mun Chun Rhee, James Hoshino, Atsushi Kim, Boa Ibrahim, Ayon Baca, Luisa G Kim, Esl Ghosh, Chandra C Parikh, Samir M Jiang, Aihua Chu, Qingwei Forman, Daniel E. Lecker, Stewart H. Krishnaiah, Saikumari Rabinowitz, Joshua D Weljie, Aalim M Baur, Joseph A Kasper, Dennis L Arany, Zoltan |
author_facet | Jang, Cholsoon Oh, Sungwhan F Wada, Shogo Rowe, Glenn C Liu, Laura Chan, Mun Chun Rhee, James Hoshino, Atsushi Kim, Boa Ibrahim, Ayon Baca, Luisa G Kim, Esl Ghosh, Chandra C Parikh, Samir M Jiang, Aihua Chu, Qingwei Forman, Daniel E. Lecker, Stewart H. Krishnaiah, Saikumari Rabinowitz, Joshua D Weljie, Aalim M Baur, Joseph A Kasper, Dennis L Arany, Zoltan |
author_sort | Jang, Cholsoon |
collection | PubMed |
description | Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. |
format | Online Article Text |
id | pubmed-4949205 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
record_format | MEDLINE/PubMed |
spelling | pubmed-49492052016-09-07 A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance Jang, Cholsoon Oh, Sungwhan F Wada, Shogo Rowe, Glenn C Liu, Laura Chan, Mun Chun Rhee, James Hoshino, Atsushi Kim, Boa Ibrahim, Ayon Baca, Luisa G Kim, Esl Ghosh, Chandra C Parikh, Samir M Jiang, Aihua Chu, Qingwei Forman, Daniel E. Lecker, Stewart H. Krishnaiah, Saikumari Rabinowitz, Joshua D Weljie, Aalim M Baur, Joseph A Kasper, Dennis L Arany, Zoltan Nat Med Article Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. 2016-03-07 2016-04 /pmc/articles/PMC4949205/ /pubmed/26950361 http://dx.doi.org/10.1038/nm.4057 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Jang, Cholsoon Oh, Sungwhan F Wada, Shogo Rowe, Glenn C Liu, Laura Chan, Mun Chun Rhee, James Hoshino, Atsushi Kim, Boa Ibrahim, Ayon Baca, Luisa G Kim, Esl Ghosh, Chandra C Parikh, Samir M Jiang, Aihua Chu, Qingwei Forman, Daniel E. Lecker, Stewart H. Krishnaiah, Saikumari Rabinowitz, Joshua D Weljie, Aalim M Baur, Joseph A Kasper, Dennis L Arany, Zoltan A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title | A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title_full | A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title_fullStr | A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title_full_unstemmed | A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title_short | A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
title_sort | branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/ https://www.ncbi.nlm.nih.gov/pubmed/26950361 http://dx.doi.org/10.1038/nm.4057 |
work_keys_str_mv | AT jangcholsoon abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ohsungwhanf abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT wadashogo abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT roweglennc abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT liulaura abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT chanmunchun abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT rheejames abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT hoshinoatsushi abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kimboa abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ibrahimayon abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT bacaluisag abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kimesl abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ghoshchandrac abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT parikhsamirm abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT jiangaihua abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT chuqingwei abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT formandaniele abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT leckerstewarth abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT krishnaiahsaikumari abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT rabinowitzjoshuad abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT weljieaalimm abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT baurjosepha abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kasperdennisl abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT aranyzoltan abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT jangcholsoon branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ohsungwhanf branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT wadashogo branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT roweglennc branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT liulaura branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT chanmunchun branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT rheejames branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT hoshinoatsushi branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kimboa branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ibrahimayon branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT bacaluisag branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kimesl branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT ghoshchandrac branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT parikhsamirm branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT jiangaihua branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT chuqingwei branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT formandaniele branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT leckerstewarth branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT krishnaiahsaikumari branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT rabinowitzjoshuad branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT weljieaalimm branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT baurjosepha branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT kasperdennisl branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance AT aranyzoltan branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance |