Cargando…

A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance

Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires...

Descripción completa

Detalles Bibliográficos
Autores principales: Jang, Cholsoon, Oh, Sungwhan F, Wada, Shogo, Rowe, Glenn C, Liu, Laura, Chan, Mun Chun, Rhee, James, Hoshino, Atsushi, Kim, Boa, Ibrahim, Ayon, Baca, Luisa G, Kim, Esl, Ghosh, Chandra C, Parikh, Samir M, Jiang, Aihua, Chu, Qingwei, Forman, Daniel E., Lecker, Stewart H., Krishnaiah, Saikumari, Rabinowitz, Joshua D, Weljie, Aalim M, Baur, Joseph A, Kasper, Dennis L, Arany, Zoltan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/
https://www.ncbi.nlm.nih.gov/pubmed/26950361
http://dx.doi.org/10.1038/nm.4057
_version_ 1782443384137318400
author Jang, Cholsoon
Oh, Sungwhan F
Wada, Shogo
Rowe, Glenn C
Liu, Laura
Chan, Mun Chun
Rhee, James
Hoshino, Atsushi
Kim, Boa
Ibrahim, Ayon
Baca, Luisa G
Kim, Esl
Ghosh, Chandra C
Parikh, Samir M
Jiang, Aihua
Chu, Qingwei
Forman, Daniel E.
Lecker, Stewart H.
Krishnaiah, Saikumari
Rabinowitz, Joshua D
Weljie, Aalim M
Baur, Joseph A
Kasper, Dennis L
Arany, Zoltan
author_facet Jang, Cholsoon
Oh, Sungwhan F
Wada, Shogo
Rowe, Glenn C
Liu, Laura
Chan, Mun Chun
Rhee, James
Hoshino, Atsushi
Kim, Boa
Ibrahim, Ayon
Baca, Luisa G
Kim, Esl
Ghosh, Chandra C
Parikh, Samir M
Jiang, Aihua
Chu, Qingwei
Forman, Daniel E.
Lecker, Stewart H.
Krishnaiah, Saikumari
Rabinowitz, Joshua D
Weljie, Aalim M
Baur, Joseph A
Kasper, Dennis L
Arany, Zoltan
author_sort Jang, Cholsoon
collection PubMed
description Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes.
format Online
Article
Text
id pubmed-4949205
institution National Center for Biotechnology Information
language English
publishDate 2016
record_format MEDLINE/PubMed
spelling pubmed-49492052016-09-07 A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance Jang, Cholsoon Oh, Sungwhan F Wada, Shogo Rowe, Glenn C Liu, Laura Chan, Mun Chun Rhee, James Hoshino, Atsushi Kim, Boa Ibrahim, Ayon Baca, Luisa G Kim, Esl Ghosh, Chandra C Parikh, Samir M Jiang, Aihua Chu, Qingwei Forman, Daniel E. Lecker, Stewart H. Krishnaiah, Saikumari Rabinowitz, Joshua D Weljie, Aalim M Baur, Joseph A Kasper, Dennis L Arany, Zoltan Nat Med Article Epidemiological and experimental data implicate branched chain amino acids (BCAAs) in the development of insulin resistance, but the mechanisms underlying this link remain unclear.(1–3) Insulin resistance in skeletal muscle stems from excess accumulation of lipid species(4), a process that requires blood-borne lipids to first traverse the blood vessel wall. Little is known, however, of how this trans-endothelial transport occurs or is regulated. Here, we leverage PGC-1α, a transcriptional coactivator that regulates broad programs of FA consumption, to identify 3-hydroxy-isobutyrate (3-HIB), a catabolic intermediate of the BCAA valine, as a novel paracrine regulator of trans-endothelial fatty acids (FA) transport. 3-HIB is secreted from muscle cells, activates endothelial FA transport, stimulates muscle FA uptake in vivo, and promotes muscle lipid accumulation and insulin resistance in animals. Conversely, inhibiting the synthesis of 3-HIB in muscle cells blocks the promotion of endothelial FA uptake. 3-HIB levels are elevated in muscle from db/db mice and from subjects with diabetes. These data thus unveil a novel mechanism that regulates trans-endothelial flux of FAs, revealing 3-HIB as a new bioactive signaling metabolite that links the regulation of FA flux to BCAA catabolism and provides a mechanistic explanation for how increased BCAA catabolic flux can cause diabetes. 2016-03-07 2016-04 /pmc/articles/PMC4949205/ /pubmed/26950361 http://dx.doi.org/10.1038/nm.4057 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Jang, Cholsoon
Oh, Sungwhan F
Wada, Shogo
Rowe, Glenn C
Liu, Laura
Chan, Mun Chun
Rhee, James
Hoshino, Atsushi
Kim, Boa
Ibrahim, Ayon
Baca, Luisa G
Kim, Esl
Ghosh, Chandra C
Parikh, Samir M
Jiang, Aihua
Chu, Qingwei
Forman, Daniel E.
Lecker, Stewart H.
Krishnaiah, Saikumari
Rabinowitz, Joshua D
Weljie, Aalim M
Baur, Joseph A
Kasper, Dennis L
Arany, Zoltan
A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title_full A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title_fullStr A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title_full_unstemmed A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title_short A branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
title_sort branched chain amino acid metabolite drives vascular transport of fat and causes insulin resistance
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949205/
https://www.ncbi.nlm.nih.gov/pubmed/26950361
http://dx.doi.org/10.1038/nm.4057
work_keys_str_mv AT jangcholsoon abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ohsungwhanf abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT wadashogo abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT roweglennc abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT liulaura abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT chanmunchun abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT rheejames abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT hoshinoatsushi abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kimboa abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ibrahimayon abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT bacaluisag abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kimesl abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ghoshchandrac abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT parikhsamirm abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT jiangaihua abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT chuqingwei abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT formandaniele abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT leckerstewarth abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT krishnaiahsaikumari abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT rabinowitzjoshuad abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT weljieaalimm abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT baurjosepha abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kasperdennisl abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT aranyzoltan abranchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT jangcholsoon branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ohsungwhanf branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT wadashogo branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT roweglennc branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT liulaura branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT chanmunchun branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT rheejames branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT hoshinoatsushi branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kimboa branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ibrahimayon branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT bacaluisag branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kimesl branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT ghoshchandrac branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT parikhsamirm branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT jiangaihua branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT chuqingwei branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT formandaniele branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT leckerstewarth branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT krishnaiahsaikumari branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT rabinowitzjoshuad branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT weljieaalimm branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT baurjosepha branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT kasperdennisl branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance
AT aranyzoltan branchedchainaminoacidmetabolitedrivesvasculartransportoffatandcausesinsulinresistance