Cargando…

Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease

Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akines...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jiaxiang, Rittman, Timothy, Nombela, Cristina, Fois, Alessandro, Coyle-Gilchrist, Ian, Barker, Roger A., Hughes, Laura E., Rowe, James B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949391/
https://www.ncbi.nlm.nih.gov/pubmed/26582559
http://dx.doi.org/10.1093/brain/awv331
_version_ 1782443420634054656
author Zhang, Jiaxiang
Rittman, Timothy
Nombela, Cristina
Fois, Alessandro
Coyle-Gilchrist, Ian
Barker, Roger A.
Hughes, Laura E.
Rowe, James B.
author_facet Zhang, Jiaxiang
Rittman, Timothy
Nombela, Cristina
Fois, Alessandro
Coyle-Gilchrist, Ian
Barker, Roger A.
Hughes, Laura E.
Rowe, James B.
author_sort Zhang, Jiaxiang
collection PubMed
description Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders.
format Online
Article
Text
id pubmed-4949391
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-49493912016-07-20 Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease Zhang, Jiaxiang Rittman, Timothy Nombela, Cristina Fois, Alessandro Coyle-Gilchrist, Ian Barker, Roger A. Hughes, Laura E. Rowe, James B. Brain Original Articles Progressive supranuclear palsy and Parkinson’s disease have distinct underlying neuropathology, but both diseases affect cognitive function in addition to causing a movement disorder. They impair response inhibition and may lead to impulsivity, which can occur even in the presence of profound akinesia and rigidity. The current study examined the mechanisms of cognitive impairments underlying disinhibition, using horizontal saccadic latencies that obviate the impact of limb slowness on executing response decisions. Nineteen patients with clinically diagnosed progressive supranuclear palsy (Richardson’s syndrome), 24 patients with clinically diagnosed Parkinson’s disease and 26 healthy control subjects completed a saccadic Go/No-Go task with a head-mounted infrared saccadometer. Participants were cued on each trial to make a pro-saccade to a horizontal target or withhold their responses. Both patient groups had impaired behavioural performance, with more commission errors than controls. Mean saccadic latencies were similar between all three groups. We analysed behavioural responses as a binary decision between Go and No-Go choices. By using Bayesian parameter estimation, we fitted a hierarchical drift–diffusion model to individual participants’ single trial data. The model decomposes saccadic latencies into parameters for the decision process: decision boundary, drift rate of accumulation, decision bias, and non-decision time. In a leave-one-out three-way classification analysis, the model parameters provided better discrimination between patients and controls than raw behavioural measures. Furthermore, the model revealed disease-specific deficits in the Go/No-Go decision process. Both patient groups had slower drift rate of accumulation, and shorter non-decision time than controls. But patients with progressive supranuclear palsy were strongly biased towards a pro-saccade decision boundary compared to Parkinson’s patients and controls. This indicates a prepotency of responding in combination with a reduction in further accumulation of evidence, which provides a parsimonious explanation for the apparently paradoxical combination of disinhibition and severe akinesia. The combination of the well-tolerated oculomotor paradigm and the sensitivity of the model-based analysis provides a valuable approach for interrogating decision-making processes in neurodegenerative disorders. The mechanistic differences underlying participants’ poor performance were not observable from classical analysis of behavioural data, but were clearly revealed by modelling. These differences provide a rational basis on which to develop and assess new therapeutic strategies for cognition and behaviour in these disorders. Oxford University Press 2016-01 2015-11-18 /pmc/articles/PMC4949391/ /pubmed/26582559 http://dx.doi.org/10.1093/brain/awv331 Text en © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Zhang, Jiaxiang
Rittman, Timothy
Nombela, Cristina
Fois, Alessandro
Coyle-Gilchrist, Ian
Barker, Roger A.
Hughes, Laura E.
Rowe, James B.
Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title_full Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title_fullStr Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title_full_unstemmed Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title_short Different decision deficits impair response inhibition in progressive supranuclear palsy and Parkinson’s disease
title_sort different decision deficits impair response inhibition in progressive supranuclear palsy and parkinson’s disease
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949391/
https://www.ncbi.nlm.nih.gov/pubmed/26582559
http://dx.doi.org/10.1093/brain/awv331
work_keys_str_mv AT zhangjiaxiang differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT rittmantimothy differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT nombelacristina differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT foisalessandro differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT coylegilchristian differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT barkerrogera differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT hugheslaurae differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease
AT rowejamesb differentdecisiondeficitsimpairresponseinhibitioninprogressivesupranuclearpalsyandparkinsonsdisease