Cargando…

Initiation of programmed cell death in the suspensor is predominantly regulated maternally in a tobacco hybrid

Maternal gene products deposited in the egg regulate early embryogenesis before activation of the embryonic genome in animals. While in higher plants, it is believed that genes of parental origin contribute to early embryogenesis. However, little is known regarding the particular processes in which...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, An, Zhao, Peng, Zhang, Li-Yao, Sun, Meng-Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949469/
https://www.ncbi.nlm.nih.gov/pubmed/27432530
http://dx.doi.org/10.1038/srep29467
Descripción
Sumario:Maternal gene products deposited in the egg regulate early embryogenesis before activation of the embryonic genome in animals. While in higher plants, it is believed that genes of parental origin contribute to early embryogenesis. However, little is known regarding the particular processes in which genes of parental origin are involved during early embryogenesis. Previously, we found that the initiation of programmed cell death (PCD) in the suspensor of the embryo is regulated by the cystatin, NtCYS. Here, we confirmed that both parental transcripts contribute to PCD, but the relative expression level of the maternal NtCYS allele was much higher than that of the paternal allele in early embryos of tobacco interspecific hybrids. The expression level of the maternal NtCYS allele was decreased markedly, which was necessary for the initiation of PCD, while the paternal allele didn’t change. Interestingly, the pattern of PCD in the hybrid suspensor and the morphology of the hybrid suspensor were similar to those of the maternal parent. Our results suggest that NtCYS-mediated PCD initiation in the hybrid suspensor is likely controlled in a maternal dominant manner. This finding represents an example of the involvement of parental transcripts in a specific developmental event during early embryogenesis.