Cargando…

Lineage‐specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage‐specific elements created by both sequence and functional turnover

Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage‐specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, al...

Descripción completa

Detalles Bibliográficos
Autor principal: Young, Robert S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949557/
https://www.ncbi.nlm.nih.gov/pubmed/27231054
http://dx.doi.org/10.1002/bies.201500192
Descripción
Sumario:Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage‐specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover – where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved – can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage‐specific regions may play an important but previously underappreciated role in human biology and disease.