Cargando…
“Noisy beets”: impact of phenotyping errors on genomic predictions for binary traits in Beta vulgaris
BACKGROUND: Noise (errors) in scientific data is endemic and may have a detrimental effect on statistical analyses and experimental results. The effects of noisy data have been assessed in genome-wide association studies for case-control experiments in human medicine. Little is known, however, on th...
Autores principales: | Biscarini, Filippo, Nazzicari, Nelson, Broccanello, Chiara, Stevanato, Piergiorgio, Marini, Simone |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949885/ https://www.ncbi.nlm.nih.gov/pubmed/27437026 http://dx.doi.org/10.1186/s13007-016-0136-4 |
Ejemplares similares
-
Genome-enabled predictions for binomial traits in sugar beet populations
por: Biscarini, Filippo, et al.
Publicado: (2014) -
A new polymorphism on chromosome 6 associated with bolting tendency in sugar beet
por: Broccanello, Chiara, et al.
Publicado: (2015) -
Targeted Next-Generation Sequencing Identification of Mutations in Disease Resistance Gene Analogs (RGAs) in Wild and Cultivated Beets
por: Stevanato, Piergiorgio, et al.
Publicado: (2017) -
Quantification of rhizomania virus by automated RNA isolation and PCR based methods in sugar beet
por: Chiodi, Claudia, et al.
Publicado: (2021) -
Comparison of three PCR-based assays for SNP genotyping in plants
por: Broccanello, Chiara, et al.
Publicado: (2018)