Cargando…

A comparative study of dipolarization fronts at MMS and Cluster

We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below 12 R (E) and 20 R (E), respectively. Assuming that the DFs have a semicircular cross section and are propelled by the magnetic tension force, we used multispacecra...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmid, D., Nakamura, R., Volwerk, M., Plaschke, F., Narita, Y., Baumjohann, W., Magnes, W., Fischer, D., Eichelberger, H. U., Torbert, R. B., Russell, C. T., Strangeway, R. J., Leinweber, H. K., Le, G., Bromund, K. R., Anderson, B. J., Slavin, J. A., Kepko, E. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4949994/
https://www.ncbi.nlm.nih.gov/pubmed/27478286
http://dx.doi.org/10.1002/2016GL069520
Descripción
Sumario:We present a statistical study of dipolarization fronts (DFs), using magnetic field data from MMS and Cluster, at radial distances below 12 R (E) and 20 R (E), respectively. Assuming that the DFs have a semicircular cross section and are propelled by the magnetic tension force, we used multispacecraft observations to determine the DF velocities. About three quarters of the DFs propagate earthward and about one quarter tailward. Generally, MMS is in a more dipolar magnetic field region and observes larger‐amplitude DFs than Cluster. The major findings obtained in this study are as follows: (1) At MMS ∼57 % of the DFs move faster than 150 km/s, while at Cluster only ∼35 %, indicating a variable flux transport rate inside the flow‐braking region. (2) Larger DF velocities correspond to higher B (z) values directly ahead of the DFs. We interpret this as a snow plow‐like phenomenon, resulting from a higher magnetic flux pileup ahead of DFs with higher velocities.