Cargando…
Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells
SCOPE: In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. METHODS AND RESULTS: Hu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950056/ https://www.ncbi.nlm.nih.gov/pubmed/25787755 http://dx.doi.org/10.1002/mnfr.201400803 |
_version_ | 1782443520461635584 |
---|---|
author | Amin, Hiren P. Czank, Charles Raheem, Saki Zhang, Qingzhi Botting, Nigel P. Cassidy, Aedín Kay, Colin D. |
author_facet | Amin, Hiren P. Czank, Charles Raheem, Saki Zhang, Qingzhi Botting, Nigel P. Cassidy, Aedín Kay, Colin D. |
author_sort | Amin, Hiren P. |
collection | PubMed |
description | SCOPE: In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. METHODS AND RESULTS: Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). CONCLUSION: These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. |
format | Online Article Text |
id | pubmed-4950056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-49500562016-07-28 Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells Amin, Hiren P. Czank, Charles Raheem, Saki Zhang, Qingzhi Botting, Nigel P. Cassidy, Aedín Kay, Colin D. Mol Nutr Food Res Research Articles SCOPE: In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. METHODS AND RESULTS: Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). CONCLUSION: These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators. John Wiley and Sons Inc. 2015-04-30 2015-06 /pmc/articles/PMC4950056/ /pubmed/25787755 http://dx.doi.org/10.1002/mnfr.201400803 Text en © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Amin, Hiren P. Czank, Charles Raheem, Saki Zhang, Qingzhi Botting, Nigel P. Cassidy, Aedín Kay, Colin D. Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title | Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title_full | Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title_fullStr | Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title_full_unstemmed | Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title_short | Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells |
title_sort | anthocyanins and their physiologically relevant metabolites alter the expression of il‐6 and vcam‐1 in cd40l and oxidized ldl challenged vascular endothelial cells |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950056/ https://www.ncbi.nlm.nih.gov/pubmed/25787755 http://dx.doi.org/10.1002/mnfr.201400803 |
work_keys_str_mv | AT aminhirenp anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT czankcharles anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT raheemsaki anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT zhangqingzhi anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT bottingnigelp anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT cassidyaedin anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells AT kaycolind anthocyaninsandtheirphysiologicallyrelevantmetabolitesaltertheexpressionofil6andvcam1incd40landoxidizedldlchallengedvascularendothelialcells |