Cargando…

Members of the methanotrophic genus Methylomarinum inhabit inland mud pots

Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by o...

Descripción completa

Detalles Bibliográficos
Autores principales: Fradet, Danielle T., Tavormina, Patricia L., Orphan, Victoria J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950536/
https://www.ncbi.nlm.nih.gov/pubmed/27478692
http://dx.doi.org/10.7717/peerj.2116
Descripción
Sumario:Proteobacteria capable of converting the greenhouse gas methane to biomass, energy, and carbon dioxide represent a small but important sink in global methane inventories. Currently, 23 genera of methane oxidizing (methanotrophic) proteobacteria have been described, although many are represented by only a single validly described species. Here we describe a new methanotrophic isolate that shares phenotypic characteristics and phylogenetic relatedness with the marine methanotroph Methylomarinum vadi. However, the new isolate derives from a terrestrial saline mud pot at the northern terminus of the Eastern Pacific Rise (EPR). This new cultivar expands our knowledge of the ecology of Methylomarinum, ultimately towards a fuller understanding of the role of this genus in global methane cycling.