Cargando…
Intestinal Microbiota Promotes Psoriasis-Like Skin Inflammation by Enhancing Th17 Response
Psoriasis is a chronic inflammatory skin disease in which Th17 cells play a crucial role. Since indigenous gut microbiota influences the development and reactivity of immune cells, we analyzed the link among microbiota, T cells and the formation of psoriatic lesions in the imiquimod-induced murine m...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951142/ https://www.ncbi.nlm.nih.gov/pubmed/27434104 http://dx.doi.org/10.1371/journal.pone.0159539 |
Sumario: | Psoriasis is a chronic inflammatory skin disease in which Th17 cells play a crucial role. Since indigenous gut microbiota influences the development and reactivity of immune cells, we analyzed the link among microbiota, T cells and the formation of psoriatic lesions in the imiquimod-induced murine model of psoriasis. To explore the role of microbiota, we induced skin inflammation in germ-free (GF), broad-spectrum antibiotic (ATB)-treated or conventional (CV) BALB/c and C57BL/6 mice. We found that both mice reared in GF conditions for several generations and CV mice treated with ATB were more resistant to imiquimod-induced skin inflammation than CV mice. The ATB treatment dramatically changed the diversity of gut bacteria, which remained stable after subsequent imiquimod application; ATB treatment resulted in a substantial increase in the order Lactobacillales and a significant decrease in Coriobacteriales and Clostridiales. Moreover, as compared to CV mice, imiquimod induced a lower degree of local and systemic Th17 activation in both GF and ATB-treated mice. These findings suggest that gut microbiota control imiquimod-induced skin inflammation by altering the T cell response. |
---|