Cargando…
Glycosylation of arabinogalactan-proteins essential for development in Arabidopsis
Arabinogalactan-proteins (AGPs) are ubiquitous cell wall components present throughout the plant kingdom. They are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of arabinogalactan (AG) polysaccharides to Hyp residues. Two small gene subfam...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951162/ https://www.ncbi.nlm.nih.gov/pubmed/27489583 http://dx.doi.org/10.1080/19420889.2016.1177687 |
Sumario: | Arabinogalactan-proteins (AGPs) are ubiquitous cell wall components present throughout the plant kingdom. They are extensively post translationally modified by conversion of proline to hydroxyproline (Hyp) and by addition of arabinogalactan (AG) polysaccharides to Hyp residues. Two small gene subfamilies within the CAZy GT31 family, referred to as Hyp-galactosyltransferases (Hyp-GALTs and HPGTs), encode enzymes that specifically add galactose to AGP protein backbones as revealed by heterologous expression of the genes coupled with an in vitro enzyme assay and by biochemical characterization of the genetic knock-out mutants. Biochemical analysis of galt2galt5 double and hpgt1hpgt2hpgt3 triple knockout mutants revealed significant reductions in both AGP-specific Hyp-GALT activity and β-Gal-Yariv precipitable AGPs. Further analysis of these mutants demonstrated both overlapping and distinct pleiotropic growth and development phenotypes, indicating the important contributions of the carbohydrate moieties toward AGP function. Current research indicates that all 8 Hyp-GALT/HPGT genes encode enzymes that catalyze the initial step for AGP glycosylation and that AGP glycans play essential roles in plant growth and development. |
---|