Cargando…

Emodin via colonic irrigation modulates gut microbiota and reduces uremic toxins in rats with chronic kidney disease

Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Zeng, Yu-Qun, Dai, Zhenhua, Lu, Fuhua, Lu, Zhaoyu, Liu, Xusheng, Chen, Cha, Qu, Pinghua, Li, Dingcheng, Hua, Zhengshuang, Qu, Yanni, Zou, Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951226/
https://www.ncbi.nlm.nih.gov/pubmed/27003359
http://dx.doi.org/10.18632/oncotarget.8160
Descripción
Sumario:Gut microbiota plays a dual role in chronic kidney disease (CKD) and is closely linked to production of uremic toxins. Strategies of reducing uremic toxins by targeting gut microbiota are emerging. It is known that Chinese medicine rhubarb enema can reduce uremic toxins and improve renal function. However, it remains unknown which ingredient or mechanism mediates its effect. Here we utilized a rat CKD model of 5/6 nephrectomy to evaluate the effect of emodin, a main ingredient of rhubarb, on gut microbiota and uremic toxins in CKD. Emodin was administered via colonic irrigation at 5ml (1mg/day) for four weeks. We found that emodin via colonic irrigation (ECI) altered levels of two important uremic toxins, urea and indoxyl sulfate (IS), and changed gut microbiota in rats with CKD. ECI remarkably reduced urea and IS and improved renal function. Pyrosequencing and Real-Time qPCR analyses revealed that ECI resumed the microbial balance from an abnormal status in CKD. We also demonstrated that ten genera were positively correlated with Urea while four genera exhibited the negative correlation. Moreover, three genera were positively correlated with IS. Therefore, emodin altered the gut microbiota structure. It reduced the number of harmful bacteria, such as Clostridium spp. that is positively correlated with both urea and IS, but augmented the number of beneficial bacteria, including Lactobacillus spp. that is negatively correlated with urea. Thus, changes in gut microbiota induced by emodin via colonic irrigation are closely associated with reduction in uremic toxins and mitigation of renal injury.