Cargando…

Methylation-associated silencing of miR-200b facilitates human hepatocellular carcinoma progression by directly targeting BMI1

This study aims to investigate the biological function of microRNA-200b and BMI1, predicted target of microRNA-200b in human hepatocellular carcinoma (HCC). MicroRNA-200b and BMI1 expression in HCC tissues were evaluated by qPCR. A luciferase reporter assay was used to validate BMI1 as a direct targ...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wen-rui, Sun, Hong, Zhang, Rui, Yu, Xian-huan, Shi, Xiang-de, Zhu, Man-sheng, Zeng, Hong, Yan, Li-xu, Xu, Lei-bo, Liu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951320/
https://www.ncbi.nlm.nih.gov/pubmed/26919246
http://dx.doi.org/10.18632/oncotarget.7629
Descripción
Sumario:This study aims to investigate the biological function of microRNA-200b and BMI1, predicted target of microRNA-200b in human hepatocellular carcinoma (HCC). MicroRNA-200b and BMI1 expression in HCC tissues were evaluated by qPCR. A luciferase reporter assay was used to validate BMI1 as a direct target of microRNA-200b. The effect of microRNA-200b on HCC progression was studied in vitro and in vivo. Methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to detect the methylation status of the microRNA-200b promoter. Significant downregulation of microRNA-200b was observed in 83.3% of HCC tissues. By contrast, BMI1 was significantly overexpressed in 66.7% of HCC tissues. The results of the luciferase assay confirmed BMI1 as a direct target gene of microRNA-200b. Forced expression of microRNA-200b in HCC cells dramatically repressed proliferation, colony formation, cell cycle progression, and invasion. Moreover, microRNA-200b synergized with 5-fluorouracil to induce apoptosis in vitro and suppressed tumorigenicity in vivo. In addition, MSP analysis and BSP revealed that CpG sites in the promoter region of microRNA-200b were extensively methylated in HCC, with concomitant downregulation of microRNA-200b expression. Furthermore, microRNA-200b was activated in HCC cells after treatment with 5-azacytidine, whereas BMI1 expression was clearly downregulated. Our results indicate that microRNA-200b is partially silenced by DNA hypermethylation and that it can repress tumor progression by directly targeting BMI1 in HCC.