Cargando…

Construction and Immunological Evaluation of CpG-Au@HBc Virus-Like Nanoparticles as a Potential Vaccine

Different types of vaccines have been developed to elicit active immunization to treat various diseases, while suffer from limitation of efficacy. Herein, a novel immunostimulatory nanocomposite (CpG-Au@HBc VLP) was rationally designed by self-assembling engineered virus-like particles encapsulating...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yarun, Wang, Yue, Kang, Ning, Liu, Yongliang, Shan, Wenjun, Bi, Shengli, Ren, Lei, Zhuang, Guohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951386/
https://www.ncbi.nlm.nih.gov/pubmed/27435343
http://dx.doi.org/10.1186/s11671-016-1554-y
Descripción
Sumario:Different types of vaccines have been developed to elicit active immunization to treat various diseases, while suffer from limitation of efficacy. Herein, a novel immunostimulatory nanocomposite (CpG-Au@HBc VLP) was rationally designed by self-assembling engineered virus-like particles encapsulating CpG-gold nanoparticle conjugates through electrostatic interactions. The monodispersed and uniformly sized CpG-Au@HBc VLP showed increased CD4(+), CD8(+) T cell numbers and stronger secretion of cytokine interferon-gamma than HBc VLPs adjuvanted with conventional Freund’s adjuvant. Furthermore, the use of Au nanoparticles also generated enhanced immunogenicity of CpG and VLPs on both humoral and cellular immune pathways, as followed from increased expressions of total HBc-specific antibody titer, CD4(+) T cells, CD8(+) T cells, cytokine interleukin-4, and interferon-gamma. These findings demonstrated that CpG-Au@HBc VLP nanocomposite could induce robust cellular and humoral immune response, which could be a potential vaccine for future prophylactic and therapeutic application.