Cargando…
Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network
BACKGROUND: Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune system functions through a common set of signalling pathways. Genetic variants in and expression of individual TNF superfamily cytokines, receptors and signalling proteins have been associated...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4952362/ https://www.ncbi.nlm.nih.gov/pubmed/27435189 http://dx.doi.org/10.1186/s13073-016-0329-5 |
_version_ | 1782443787507728384 |
---|---|
author | Richard, Arianne C. Peters, James E. Lee, James C. Vahedi, Golnaz Schäffer, Alejandro A. Siegel, Richard M. Lyons, Paul A. Smith, Kenneth G. C. |
author_facet | Richard, Arianne C. Peters, James E. Lee, James C. Vahedi, Golnaz Schäffer, Alejandro A. Siegel, Richard M. Lyons, Paul A. Smith, Kenneth G. C. |
author_sort | Richard, Arianne C. |
collection | PubMed |
description | BACKGROUND: Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune system functions through a common set of signalling pathways. Genetic variants in and expression of individual TNF superfamily cytokines, receptors and signalling proteins have been associated with autoimmune and inflammatory diseases, but their interconnected biology has been largely unexplored. METHODS: We took a hypothesis-driven approach using available genome-wide datasets to identify genetic variants regulating gene expression in the TNF superfamily cytokine signalling network and the association of these variants with autoimmune and autoinflammatory disease. Using paired gene expression and genetic data, we identified genetic variants associated with gene expression, expression quantitative trait loci (eQTLs), in four peripheral blood cell subsets. We then examined whether eQTLs were dependent on gene expression level or the presence of active enhancer chromatin marks. Using these eQTLs as genetic markers of the TNF superfamily signalling network, we performed targeted gene set association analysis in eight autoimmune and autoinflammatory disease genome-wide association studies. RESULTS: Comparison of TNF superfamily network gene expression and regulatory variants across four leucocyte subsets revealed patterns that differed between cell types. eQTLs for genes in this network were not dependent on absolute gene expression levels and were not enriched for chromatin marks of active enhancers. By examining autoimmune disease risk variants among our eQTLs, we found that risk alleles can be associated with either increased or decreased expression of co-stimulatory TNF superfamily cytokines, receptors or downstream signalling molecules. Gene set disease association analysis revealed that eQTLs for genes in the TNF superfamily pathway were associated with six of the eight autoimmune and autoinflammatory diseases examined, demonstrating associations beyond single genome-wide significant hits. CONCLUSIONS: This systematic analysis of the influence of regulatory genetic variants in the TNF superfamily network reveals widespread and diverse roles for these cytokines in susceptibility to a number of immune-mediated diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0329-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4952362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-49523622016-07-21 Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network Richard, Arianne C. Peters, James E. Lee, James C. Vahedi, Golnaz Schäffer, Alejandro A. Siegel, Richard M. Lyons, Paul A. Smith, Kenneth G. C. Genome Med Research BACKGROUND: Tumour necrosis factor (TNF) superfamily cytokines and their receptors regulate diverse immune system functions through a common set of signalling pathways. Genetic variants in and expression of individual TNF superfamily cytokines, receptors and signalling proteins have been associated with autoimmune and inflammatory diseases, but their interconnected biology has been largely unexplored. METHODS: We took a hypothesis-driven approach using available genome-wide datasets to identify genetic variants regulating gene expression in the TNF superfamily cytokine signalling network and the association of these variants with autoimmune and autoinflammatory disease. Using paired gene expression and genetic data, we identified genetic variants associated with gene expression, expression quantitative trait loci (eQTLs), in four peripheral blood cell subsets. We then examined whether eQTLs were dependent on gene expression level or the presence of active enhancer chromatin marks. Using these eQTLs as genetic markers of the TNF superfamily signalling network, we performed targeted gene set association analysis in eight autoimmune and autoinflammatory disease genome-wide association studies. RESULTS: Comparison of TNF superfamily network gene expression and regulatory variants across four leucocyte subsets revealed patterns that differed between cell types. eQTLs for genes in this network were not dependent on absolute gene expression levels and were not enriched for chromatin marks of active enhancers. By examining autoimmune disease risk variants among our eQTLs, we found that risk alleles can be associated with either increased or decreased expression of co-stimulatory TNF superfamily cytokines, receptors or downstream signalling molecules. Gene set disease association analysis revealed that eQTLs for genes in the TNF superfamily pathway were associated with six of the eight autoimmune and autoinflammatory diseases examined, demonstrating associations beyond single genome-wide significant hits. CONCLUSIONS: This systematic analysis of the influence of regulatory genetic variants in the TNF superfamily network reveals widespread and diverse roles for these cytokines in susceptibility to a number of immune-mediated diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13073-016-0329-5) contains supplementary material, which is available to authorized users. BioMed Central 2016-07-19 /pmc/articles/PMC4952362/ /pubmed/27435189 http://dx.doi.org/10.1186/s13073-016-0329-5 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Richard, Arianne C. Peters, James E. Lee, James C. Vahedi, Golnaz Schäffer, Alejandro A. Siegel, Richard M. Lyons, Paul A. Smith, Kenneth G. C. Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title | Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title_full | Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title_fullStr | Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title_full_unstemmed | Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title_short | Targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the TNF superfamily cytokine signalling network |
title_sort | targeted genomic analysis reveals widespread autoimmune disease association with regulatory variants in the tnf superfamily cytokine signalling network |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4952362/ https://www.ncbi.nlm.nih.gov/pubmed/27435189 http://dx.doi.org/10.1186/s13073-016-0329-5 |
work_keys_str_mv | AT richardariannec targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT petersjamese targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT leejamesc targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT vahedigolnaz targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT schafferalejandroa targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT siegelrichardm targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT lyonspaula targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork AT smithkennethgc targetedgenomicanalysisrevealswidespreadautoimmunediseaseassociationwithregulatoryvariantsinthetnfsuperfamilycytokinesignallingnetwork |