Cargando…
Joint large deviation result for empirical measures of the coloured random geometric graphs
We prove joint large deviation principle for the empirical pair measure and empirical locality measure of the near intermediate coloured random geometric graph models on n points picked uniformly in a d-dimensional torus of a unit circumference. From this result we obtain large deviation principles...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954807/ https://www.ncbi.nlm.nih.gov/pubmed/27504238 http://dx.doi.org/10.1186/s40064-016-2718-z |
Sumario: | We prove joint large deviation principle for the empirical pair measure and empirical locality measure of the near intermediate coloured random geometric graph models on n points picked uniformly in a d-dimensional torus of a unit circumference. From this result we obtain large deviation principles for the number of edges per vertex, the degree distribution and the proportion of isolated vertices for the near intermediate random geometric graph models. |
---|