Cargando…
Nitrogen Mineralization of a Loam Soil Supplemented with Organic–Inorganic Amendments under Laboratory Incubation
The quantification of nitrogen (N) supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aims of the present study was to determine the potential N mineralization and sub...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4954816/ https://www.ncbi.nlm.nih.gov/pubmed/27493649 http://dx.doi.org/10.3389/fpls.2016.01038 |
Sumario: | The quantification of nitrogen (N) supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aims of the present study was to determine the potential N mineralization and subsequent nitrification of separate and combined use of poultry manure (PM), wheat straw residues (WSR), and urea N (UN) applied to a loam soil incubated periodically over 140 days period. In addition, changes in total soil N and carbon contents were also monitored during the study. Treatments included: PM(100), WSR(100), PM(50) + WSR(50), UN(100), UN(50) + PM(50), UN(50) + WSR(50), UN(50) + PM(25) + WSR(25), and a control (unfertilized). All the amendments were applied on an N-equivalent basis at the rate of 200 mg N kg(-1). Results indicated that a substantial quantity of N had been released from the added amendments into the soil mineral pool and the net cumulative N mineralized varied between 39 and 147 mg N kg(-1), lowest in the WSR and highest in the UN(50) + PM(50). Significant differences were observed among the amendments and the net mineral N derived from a separate and combined use of PM was greater than the other treatments. The net cumulative N nitrified (NCNN) varied between 16 and 126 mg kg(-1), highest in UN(50) + PM(50) treatment. On average, percentage conversion of added N into available N by different amendments varied between 21 and 80%, while conversion of applied N into NO(3)(-)–N ranged between 9 and 65%, and the treatment UN(50) + PM(50) displayed the highest N recovery. Urea N when applied alone showed disappearance of 37% N (N unaccounted for) at the end while application of PM and WSR with UN reduced N disappearance and increased N retention in the mineral pool for a longer period. Organic amendments alone or in combination with UN improved organic matter buildup and increased soil N concentration. These results demonstrate the existence of substantial amounts of N reserves present in PM and WSR that can be utilized efficiently and effectively as potential N source for the management of nutrient poor soils and plant growth. |
---|