Cargando…

Two paths for stabilization of ERG in prostate carcinogenesis: TMPRSS2-ERG fusions and speckle-type pox virus and zinc finger protein mutations

Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is an E3 ubiquitin ligase adaptor protein that specifically promotes the ubiquitination and proteasome degradation of proteins. SPOP mutations are frequent in prostate cancer, and in a previous study, An et al. demonstrated that SPO...

Descripción completa

Detalles Bibliográficos
Autores principales: Pascal, Laura E, Wang, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955185/
https://www.ncbi.nlm.nih.gov/pubmed/26763545
http://dx.doi.org/10.4103/1008-682X.168793
Descripción
Sumario:Speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) is an E3 ubiquitin ligase adaptor protein that specifically promotes the ubiquitination and proteasome degradation of proteins. SPOP mutations are frequent in prostate cancer, and in a previous study, An et al. demonstrated that SPOP induced the degradation of the androgen receptor (AR) suggesting that SPOP is important in maintaining prostate homeostasis. In this current highlighted report, An and colleagues showed that ERG, which has been implicated as an oncoprotein in prostate cancer, contains putative SPOP-binding consensus (SBC) motifs (42)ASSSS(46) and (423)VTSSS(427) in the N- and C-terminal of ERG, respectively. The authors went on to demonstrate that SPOP promotes the ubiquitination and degradation of ERG through binding to the degron/SBC motif at the ERG N-terminus. SPOP mutations in the MATH domain prevented recognition and targeting of ERG for ubiquitination and degradation. In addition, N-terminal truncated ERG proteins encoded by the most frequently identified TMPRSS2-ERG rearrangements in prostate cancer (T1-E4 and T1-E5) were resistant to SPOP-mediated degradation, resulting in the stabilization of truncated ERG proteins. Stabilization of ERG protein through either SPOP mutation or TMPRSS2-ERG fusions induced proliferation and invasion in prostate cancer cells. This study along with a recently published similar report provides two previously unrecognized mechanisms for the upregulation of ERG proteins frequently observed in prostate cancers. These findings generate great enthusiasm for the development of targeted therapeutic strategies designed to eliminate ERG protein in prostate cancer cells.