Cargando…
Longitudinal associations between bone and adipose tissue biochemical markers with bone mineralization in boys during puberty
BACKGROUND: We investigated longitudinal relationships between the biochemical markers of bone and adipose tissue with bone mineral content (BMC), bone mineral density (BMD), moderate-to-vigorous physical activity (MVPA) and sedentary time (SED) in pubertal boys. METHODS: Ninety-six boys (11.9 ± 0.6...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955269/ https://www.ncbi.nlm.nih.gov/pubmed/27439435 http://dx.doi.org/10.1186/s12887-016-0647-1 |
Sumario: | BACKGROUND: We investigated longitudinal relationships between the biochemical markers of bone and adipose tissue with bone mineral content (BMC), bone mineral density (BMD), moderate-to-vigorous physical activity (MVPA) and sedentary time (SED) in pubertal boys. METHODS: Ninety-six boys (11.9 ± 0.6 years old) were measured at baseline, after 12 and 24 months. Body composition (fat mass [FM], lean body mass [LBM]), and whole body (WB), lumbar spine (LS) and femoral neck (FN) BMD and BMC were assessed. Additionally, serum leptin, adiponectin, osteocalcin (OC) and C-terminal telopeptide of type I collagen (CTX) were measured. RESULTS: OC had a strong longitudinal inverse effect on changes in WB_BMD (p < 0.001) and LS_BMD (p = 0.021), while CTX had an inverse effect only on changes in FN_BMD (p = 0.011). Leptin had an inverse effect on changes in WB_BMC/WB_BMD (p = 0.001), FN_BMD (p = 0.002) and LS_BMD (p = 0.001). MVPA showed a longitudinal inverse effect on changes in leptin (p = 0.030), however no longitudinal effect of SED to biochemical markers of bone and adipose tissue was found. CONCLUSIONS: Bone metabolism markers have negative effect on bone mineral accrual during puberty. Increases in MVPA affect leptin, suggesting a positive link of MVPA through leptin metabolism on increases in bone mineralization during puberty. |
---|