Cargando…
Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine
Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated dis...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956263/ https://www.ncbi.nlm.nih.gov/pubmed/27441638 http://dx.doi.org/10.1371/journal.pone.0159750 |
_version_ | 1782444011588419584 |
---|---|
author | Raza, Haider John, Annie Shafarin, Jasmin |
author_facet | Raza, Haider John, Annie Shafarin, Jasmin |
author_sort | Raza, Haider |
collection | PubMed |
description | Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS) production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC). Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins. |
format | Online Article Text |
id | pubmed-4956263 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49562632016-08-08 Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine Raza, Haider John, Annie Shafarin, Jasmin PLoS One Research Article Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS) production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC). Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins. Public Library of Science 2016-07-21 /pmc/articles/PMC4956263/ /pubmed/27441638 http://dx.doi.org/10.1371/journal.pone.0159750 Text en © 2016 Raza et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Raza, Haider John, Annie Shafarin, Jasmin Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title | Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title_full | Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title_fullStr | Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title_full_unstemmed | Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title_short | Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine |
title_sort | potentiation of lps-induced apoptotic cell death in human hepatoma hepg2 cells by aspirin via ros and mitochondrial dysfunction: protection by n-acetyl cysteine |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956263/ https://www.ncbi.nlm.nih.gov/pubmed/27441638 http://dx.doi.org/10.1371/journal.pone.0159750 |
work_keys_str_mv | AT razahaider potentiationoflpsinducedapoptoticcelldeathinhumanhepatomahepg2cellsbyaspirinviarosandmitochondrialdysfunctionprotectionbynacetylcysteine AT johnannie potentiationoflpsinducedapoptoticcelldeathinhumanhepatomahepg2cellsbyaspirinviarosandmitochondrialdysfunctionprotectionbynacetylcysteine AT shafarinjasmin potentiationoflpsinducedapoptoticcelldeathinhumanhepatomahepg2cellsbyaspirinviarosandmitochondrialdysfunctionprotectionbynacetylcysteine |