Cargando…
Model-Free Machine Learning in Biomedicine: Feasibility Study in Type 1 Diabetes
Although reinforcement learning (RL) is suitable for highly uncertain systems, the applicability of this class of algorithms to medical treatment may be limited by the patient variability which dictates individualised tuning for their usually multiple algorithmic parameters. This study explores the...
Autores principales: | Daskalaki, Elena, Diem, Peter, Mougiakakou, Stavroula G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956312/ https://www.ncbi.nlm.nih.gov/pubmed/27441367 http://dx.doi.org/10.1371/journal.pone.0158722 |
Ejemplares similares
-
Incorporating biological structure into machine learning models in
biomedicine
por: Crawford, Jake, et al.
Publicado: (2020) -
Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study
por: Rhyner, Daniel, et al.
Publicado: (2016) -
Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine
por: Gu, Qiang, et al.
Publicado: (2021) -
Predictive Modelling Based on Statistical Learning in Biomedicine
por: Gefeller, Olaf, et al.
Publicado: (2017) -
Advances in Nanomaterials in Biomedicine
por: Ryabchikova, Elena
Publicado: (2021)