Cargando…
Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis
The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-ei...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956759/ https://www.ncbi.nlm.nih.gov/pubmed/27445254 http://dx.doi.org/10.1038/srep30008 |
_version_ | 1782444070864420864 |
---|---|
author | Oinas, J. Rieppo, L. Finnilä, M. A. J. Valkealahti, M. Lehenkari, P. Saarakkala, S. |
author_facet | Oinas, J. Rieppo, L. Finnilä, M. A. J. Valkealahti, M. Lehenkari, P. Saarakkala, S. |
author_sort | Oinas, J. |
collection | PubMed |
description | The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(−1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = −0.55) and the deep (r = −0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS. |
format | Online Article Text |
id | pubmed-4956759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-49567592016-07-26 Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis Oinas, J. Rieppo, L. Finnilä, M. A. J. Valkealahti, M. Lehenkari, P. Saarakkala, S. Sci Rep Article The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(−1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = −0.55) and the deep (r = −0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS. Nature Publishing Group 2016-07-21 /pmc/articles/PMC4956759/ /pubmed/27445254 http://dx.doi.org/10.1038/srep30008 Text en Copyright © 2016, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Oinas, J. Rieppo, L. Finnilä, M. A. J. Valkealahti, M. Lehenkari, P. Saarakkala, S. Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title | Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title_full | Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title_fullStr | Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title_full_unstemmed | Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title_short | Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis |
title_sort | imaging of osteoarthritic human articular cartilage using fourier transform infrared microspectroscopy combined with multivariate and univariate analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956759/ https://www.ncbi.nlm.nih.gov/pubmed/27445254 http://dx.doi.org/10.1038/srep30008 |
work_keys_str_mv | AT oinasj imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis AT rieppol imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis AT finnilamaj imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis AT valkealahtim imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis AT lehenkarip imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis AT saarakkalas imagingofosteoarthritichumanarticularcartilageusingfouriertransforminfraredmicrospectroscopycombinedwithmultivariateandunivariateanalysis |