Cargando…

A novel allele of L-galactono-1,4-lactone dehydrogenase is associated with enhanced drought tolerance through affecting stomatal aperture in common wheat

In higher plants, L-galactono-1,4-lactone dehydrogenase (GLDH) plays important roles in ascorbic acid (AsA) biosynthesis and assembly of respiration complex I. Here we report three homoeologous genes (TaGLDH-A1, -B1 and -D1) encoding common wheat GLDH isozymes and a unique allelic variant (TaGLDH-A1...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Juncheng, Li, Bin, Yang, Yanping, Mu, Peiyuan, Qian, Weiqiang, Dong, Lingli, Zhang, Kunpu, Liu, Xin, Qin, Huanju, Ling, Hongqing, Wang, Daowen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957090/
https://www.ncbi.nlm.nih.gov/pubmed/27443220
http://dx.doi.org/10.1038/srep30177
Descripción
Sumario:In higher plants, L-galactono-1,4-lactone dehydrogenase (GLDH) plays important roles in ascorbic acid (AsA) biosynthesis and assembly of respiration complex I. Here we report three homoeologous genes (TaGLDH-A1, -B1 and -D1) encoding common wheat GLDH isozymes and a unique allelic variant (TaGLDH-A1b) associated with enhanced drought tolerance. TaGLDH-A1, -B1 and -D1 were located on chromosomes 5A, 5B and 5D, respectively, and their transcripts were found in multiple organs. The three homoeologs each conferred increased GLDH activity when ectopically expressed in tobacco. Decreasing TaGLDH expression in wheat significantly reduced GLDH activity and AsA content. TaGLDH-A1b differed from wild type allele TaGLDH-A1a by an in-frame deletion of three nucleotides. TaGLDH-A1b was biochemically less active than TaGLDH-A1a, and the total GLDH activity levels were generally lower in the cultivars carrying TaGLDH-A1b relative to those with TaGLDH-A1a. Interestingly, TaGLDH-A1b cultivars showed stronger water deficiency tolerance than TaGLDH-A1a cultivars, and TaGLDH-A1b co-segregated with decreased leaf water loss in a F(2) population. Finally, TaGLDH-A1b cultivars generally exhibited smaller leaf stomatal aperture than TaGLDH-A1a varieties in control or water deficiency environments. Our work provides new information on GLDH genes and function in higher plants. TaGLDH-A1b is likely useful for further studying and improving wheat tolerance to drought stress.