Cargando…
Random Bits Forest: a Strong Classifier/Regressor for Big Data
Efficiency, memory consumption, and robustness are common problems with many popular methods for data analysis. As a solution, we present Random Bits Forest (RBF), a classification and regression algorithm that integrates neural networks (for depth), boosting (for width), and random forests (for pre...
Autores principales: | Wang, Yi, Li, Yi, Pu, Weilin, Wen, Kathryn, Shugart, Yin Yao, Xiong, Momiao, Jin, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957112/ https://www.ncbi.nlm.nih.gov/pubmed/27444562 http://dx.doi.org/10.1038/srep30086 |
Ejemplares similares
-
Bagging Nearest-Neighbor Prediction independence Test: an efficient method for nonlinear dependence of two continuous variables
por: Wang, Yi, et al.
Publicado: (2017) -
Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems
por: El Mrabet, Zakaria, et al.
Publicado: (2022) -
Using near-infrared spectroscopy and a random forest regressor to estimate intracranial pressure
por: Relander, Filip A. J., et al.
Publicado: (2022) -
Efficient test for nonlinear dependence of two continuous variables
por: Wang, Yi, et al.
Publicado: (2015) -
Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors
por: Mishra, Gunjan, et al.
Publicado: (2017)