Cargando…
A Bayesian algorithm for detecting differentially expressed proteins and its application in breast cancer research
Presence of considerable noise and missing data points make analysis of mass-spectrometry (MS) based proteomic data a challenging task. The missing values in MS data are caused by the inability of MS machines to reliably detect proteins whose abundances fall below the detection limit. We developed a...
Autores principales: | Santra, Tapesh, Delatola, Eleni Ioanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957118/ https://www.ncbi.nlm.nih.gov/pubmed/27444576 http://dx.doi.org/10.1038/srep30159 |
Ejemplares similares
-
BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research
por: Iglesias-Martinez, Luis F., et al.
Publicado: (2016) -
A Bayesian Framework That Integrates Heterogeneous Data for Inferring Gene Regulatory Networks
por: Santra, Tapesh
Publicado: (2014) -
Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology
por: Santra, Tapesh, et al.
Publicado: (2013) -
SegCorr a statistical procedure for the detection of genomic regions of correlated expression
por: Delatola, Eleni Ioanna, et al.
Publicado: (2017) -
Fitting mathematical models of biochemical pathways to steady state perturbation response data without simulating perturbation experiments
por: Santra, Tapesh
Publicado: (2018)