Cargando…
The connectivity domain: Analyzing resting state fMRI data using feature-based data-driven and model-based methods
Spontaneous fluctuations of resting state functional MRI (rsfMRI) have been widely used to understand the macro-connectome of the human brain. However, these fluctuations are not synchronized among subjects, which leads to limitations and makes utilization of first-level model-based methods challeng...
Autores principales: | Iraji, Armin, Calhoun, Vince D., Wiseman, Natalie M., Davoodi-Bojd, Esmaeil, Avanaki, Mohammad R.N., Haacke, E. Mark, Kou, Zhifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957565/ https://www.ncbi.nlm.nih.gov/pubmed/27079528 http://dx.doi.org/10.1016/j.neuroimage.2016.04.006 |
Ejemplares similares
-
Frequency-Aware Summarization of Resting-State fMRI Data
por: Yaesoubi, Maziar, et al.
Publicado: (2020) -
Tools of the trade: estimating time-varying connectivity patterns from fMRI data
por: Iraji, Armin, et al.
Publicado: (2020) -
Identification of Homogeneous Subgroups from Resting-State fMRI Data
por: Yang, Hanlu, et al.
Publicado: (2023) -
Brain Networks and Intelligence: A Graph Neural Network Based Approach to Resting State fMRI Data
por: Thapaliya, Bishal, et al.
Publicado: (2023) -
Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data
por: Kyathanahally, Sreenath P., et al.
Publicado: (2017)