Cargando…

Glycolytic Coupling to Mitochondrial Energy Production Ensures Survival in an Oxygen Rich Environment

The mitochondrion exhibits biochemical and functional variations that emerged by random chance as an evolutionary survival strategy, which include enhanced energy production driven by anaerobic respiratory mechanisms. In invertebrates, this mitochondrial anaerobic respiration permits survival at a l...

Descripción completa

Detalles Bibliográficos
Autores principales: Stefano, George B., Kream, Richard M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957629/
https://www.ncbi.nlm.nih.gov/pubmed/27439008
http://dx.doi.org/10.12659/MSM.899610
Descripción
Sumario:The mitochondrion exhibits biochemical and functional variations that emerged by random chance as an evolutionary survival strategy, which include enhanced energy production driven by anaerobic respiratory mechanisms. In invertebrates, this mitochondrial anaerobic respiration permits survival at a lower energy state suited for this type of environment while yielding more ATP than by glycolysis alone. This ability provides a protective existential advantage in naturally occurring hypoxic environments via diminished free radical generation. In the blue mussel Mytilus edulis and other marine organisms, a functionally active mitochondrial anaerobic respiratory mechanism tailored to hypoxic conditions reflects an evolutionary adaptation/reworking of ancient metabolic pathways. Components of these pathways were also discovered and characterized as metabolic intermediates in plant parasites, specifically crown gall tumors. Mechanistic similarities between anaerobically functioning mitochondria in M. edulis and crown gall tissues and metabolic processes in human tumors are known to occur, demonstrating commonalities in diverse life energy processes. Furthermore, cytoplasmic glycolytic processes are now shown also to exhibit a dynamic capacity for enhanced energy generation by increasing its efficiency in hypoxic environments, making it equally dynamic in meeting its cellular survival goal.