Cargando…
Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, ma...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957830/ https://www.ncbi.nlm.nih.gov/pubmed/27448326 http://dx.doi.org/10.1371/journal.pone.0157420 |
_version_ | 1782444232271724544 |
---|---|
author | Ran, Bin Song, Li Zhang, Jian Cheng, Yang Tan, Huachun |
author_facet | Ran, Bin Song, Li Zhang, Jian Cheng, Yang Tan, Huachun |
author_sort | Ran, Bin |
collection | PubMed |
description | Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. |
format | Online Article Text |
id | pubmed-4957830 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49578302016-08-08 Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data Ran, Bin Song, Li Zhang, Jian Cheng, Yang Tan, Huachun PLoS One Research Article Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, many methods have been proposed to estimate the traffic state for the uncovered links. However, these methods cannot provide traffic state of the entire road networks. In this paper, the traffic state estimation is transformed to solve a missing data imputation problem, and the tensor completion framework is proposed to estimate missing traffic state. A tensor is constructed to model traffic state in which observed entries are directly derived from floating car system and unobserved traffic states are modeled as missing entries of constructed tensor. The constructed traffic state tensor can represent spatial and temporal correlations of traffic data and encode the multi-way properties of traffic state. The advantage of the proposed approach is that it can fully mine and utilize the multi-dimensional inherent correlations of traffic state. We tested the proposed approach on a well calibrated simulation network. Experimental results demonstrated that the proposed approach yield reliable traffic state estimation from very sparse floating car data, particularly when dealing with the floating car penetration rate is below 1%. Public Library of Science 2016-07-22 /pmc/articles/PMC4957830/ /pubmed/27448326 http://dx.doi.org/10.1371/journal.pone.0157420 Text en © 2016 Ran et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ran, Bin Song, Li Zhang, Jian Cheng, Yang Tan, Huachun Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title | Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title_full | Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title_fullStr | Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title_full_unstemmed | Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title_short | Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data |
title_sort | using tensor completion method to achieving better coverage of traffic state estimation from sparse floating car data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957830/ https://www.ncbi.nlm.nih.gov/pubmed/27448326 http://dx.doi.org/10.1371/journal.pone.0157420 |
work_keys_str_mv | AT ranbin usingtensorcompletionmethodtoachievingbettercoverageoftrafficstateestimationfromsparsefloatingcardata AT songli usingtensorcompletionmethodtoachievingbettercoverageoftrafficstateestimationfromsparsefloatingcardata AT zhangjian usingtensorcompletionmethodtoachievingbettercoverageoftrafficstateestimationfromsparsefloatingcardata AT chengyang usingtensorcompletionmethodtoachievingbettercoverageoftrafficstateestimationfromsparsefloatingcardata AT tanhuachun usingtensorcompletionmethodtoachievingbettercoverageoftrafficstateestimationfromsparsefloatingcardata |