Cargando…
Using Tensor Completion Method to Achieving Better Coverage of Traffic State Estimation from Sparse Floating Car Data
Traffic state estimation from the floating car system is a challenging problem. The low penetration rate and random distribution make available floating car samples usually cover part space and time points of the road networks. To obtain a wide range of traffic state from the floating car system, ma...
Autores principales: | Ran, Bin, Song, Li, Zhang, Jian, Cheng, Yang, Tan, Huachun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4957830/ https://www.ncbi.nlm.nih.gov/pubmed/27448326 http://dx.doi.org/10.1371/journal.pone.0157420 |
Ejemplares similares
-
Traffic Speed Data Imputation Method Based on Tensor Completion
por: Ran, Bin, et al.
Publicado: (2015) -
A Hidden Markov Model for Urban-Scale Traffic Estimation Using Floating Car Data
por: Wang, Xiaomeng, et al.
Publicado: (2015) -
Tensor Decomposition for Spatial—Temporal Traffic Flow Prediction with Sparse Data
por: Yang, Funing, et al.
Publicado: (2020) -
Sparse Tensor Decomposition for Haplotype Assembly of Diploids and Polyploids
por: Hashemi, Abolfazl, et al.
Publicado: (2018) -
Traffic Experiment Reveals the Nature of Car-Following
por: Jiang, Rui, et al.
Publicado: (2014)