Cargando…
Chromatin organization in pluripotent cells: emerging approaches to study and disrupt function
Translating the vast amounts of genomic and epigenomic information accumulated on the linear genome into three-dimensional models of nuclear organization is a current major challenge. In response to this challenge, recent technological innovations based on chromosome conformation capture methods in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958138/ https://www.ncbi.nlm.nih.gov/pubmed/26206085 http://dx.doi.org/10.1093/bfgp/elv029 |
Sumario: | Translating the vast amounts of genomic and epigenomic information accumulated on the linear genome into three-dimensional models of nuclear organization is a current major challenge. In response to this challenge, recent technological innovations based on chromosome conformation capture methods in combination with increasingly powerful functional approaches have revealed exciting insights into key aspects of genome regulation. These findings have led to an emerging model where the genome is folded and compartmentalized into highly conserved topological domains that are further divided into functional subdomains containing physical loops that bring cis-regulatory elements to close proximity. Targeted functional experiments, largely based on designable DNA-binding proteins, have begun to define the major architectural proteins required to establish and maintain appropriate genome regulation. Here, we focus on the accessible and well-characterized system of pluripotent cells to review the functional role of chromatin organization in regulating pluripotency, differentiation and reprogramming. |
---|