Cargando…

Expression and preliminary characterization of human MICU2

MICU2 has been reported to interact with MICU1 and participate in the regulation of mitochondrial Ca(2+) uptake, although the molecular determinants underlying the function of MICU2 is unknown. In order to characterize MICU2 we screened a series of N-terminal and C-terminal truncations and obtained...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dan, Wu, Wenping, Pei, Hairun, Wei, Qiang, Yang, Qingzhan, Zheng, Jimin, Jia, Zongchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958273/
https://www.ncbi.nlm.nih.gov/pubmed/27334695
http://dx.doi.org/10.1242/bio.018572
Descripción
Sumario:MICU2 has been reported to interact with MICU1 and participate in the regulation of mitochondrial Ca(2+) uptake, although the molecular determinants underlying the function of MICU2 is unknown. In order to characterize MICU2 we screened a series of N-terminal and C-terminal truncations and obtained constructs which can be expressed in abundance, giving rise to soluble samples to enable subsequent characterizations. Size exclusion chromatography (SEC) and multi-angle laser light scattering (MALLS) revealed that MICU2 exists as a monomer in Ca(2+)-free conditions but forms a dimer in Ca(2+)-bound conditions. Unlike MICU1, the C-helix domain of MICU2 exhibits no influence on protein conformation in both Ca(2+)-free and Ca(2+)-bound forms. Furthermore, mutation of the first EF-hand abolishes the ability of MICU2 to switch to a dimer in the presence of Ca(2+), indicating that the first EF-hand is not only involved in Ca(2+) binding but also in conformational change. Our pull-down and co-immunoprecipitation assays suggest that, in addition to disulfide bonds, salt bridges also contribute to MICU1-MICU2 heterodimer formation.