Cargando…

A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model

The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we to...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong Yu, Quan, Chao, Hu, Chunxiu, Xie, Bingxian, Du, Yinan, Chen, Liang, Yang, Wei, Yang, Liu, Chen, Qiaoli, Shen, Bin, Hu, Bian, Zheng, Zhihong, Zhu, Haibo, Huang, Xingxu, Xu, Guowang, Chen, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958281/
https://www.ncbi.nlm.nih.gov/pubmed/27378433
http://dx.doi.org/10.1242/bio.019802
_version_ 1782444287542165504
author Wang, Hong Yu
Quan, Chao
Hu, Chunxiu
Xie, Bingxian
Du, Yinan
Chen, Liang
Yang, Wei
Yang, Liu
Chen, Qiaoli
Shen, Bin
Hu, Bian
Zheng, Zhihong
Zhu, Haibo
Huang, Xingxu
Xu, Guowang
Chen, Shuai
author_facet Wang, Hong Yu
Quan, Chao
Hu, Chunxiu
Xie, Bingxian
Du, Yinan
Chen, Liang
Yang, Wei
Yang, Liu
Chen, Qiaoli
Shen, Bin
Hu, Bian
Zheng, Zhihong
Zhu, Haibo
Huang, Xingxu
Xu, Guowang
Chen, Shuai
author_sort Wang, Hong Yu
collection PubMed
description The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor.
format Online
Article
Text
id pubmed-4958281
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher The Company of Biologists Ltd
record_format MEDLINE/PubMed
spelling pubmed-49582812016-08-04 A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model Wang, Hong Yu Quan, Chao Hu, Chunxiu Xie, Bingxian Du, Yinan Chen, Liang Yang, Wei Yang, Liu Chen, Qiaoli Shen, Bin Hu, Bian Zheng, Zhihong Zhu, Haibo Huang, Xingxu Xu, Guowang Chen, Shuai Biol Open Research Article The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. The Company of Biologists Ltd 2016-07-04 /pmc/articles/PMC4958281/ /pubmed/27378433 http://dx.doi.org/10.1242/bio.019802 Text en © 2016. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.
spellingShingle Research Article
Wang, Hong Yu
Quan, Chao
Hu, Chunxiu
Xie, Bingxian
Du, Yinan
Chen, Liang
Yang, Wei
Yang, Liu
Chen, Qiaoli
Shen, Bin
Hu, Bian
Zheng, Zhihong
Zhu, Haibo
Huang, Xingxu
Xu, Guowang
Chen, Shuai
A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title_full A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title_fullStr A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title_full_unstemmed A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title_short A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model
title_sort lipidomics study reveals hepatic lipid signatures associating with deficiency of the ldl receptor in a rat model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958281/
https://www.ncbi.nlm.nih.gov/pubmed/27378433
http://dx.doi.org/10.1242/bio.019802
work_keys_str_mv AT wanghongyu alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT quanchao alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT huchunxiu alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT xiebingxian alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT duyinan alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenliang alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT yangwei alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT yangliu alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenqiaoli alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT shenbin alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT hubian alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT zhengzhihong alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT zhuhaibo alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT huangxingxu alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT xuguowang alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenshuai alipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT wanghongyu lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT quanchao lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT huchunxiu lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT xiebingxian lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT duyinan lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenliang lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT yangwei lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT yangliu lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenqiaoli lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT shenbin lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT hubian lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT zhengzhihong lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT zhuhaibo lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT huangxingxu lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT xuguowang lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel
AT chenshuai lipidomicsstudyrevealshepaticlipidsignaturesassociatingwithdeficiencyoftheldlreceptorinaratmodel