Cargando…
Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection
Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has be...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958398/ https://www.ncbi.nlm.nih.gov/pubmed/27032931 http://dx.doi.org/10.1007/s11517-016-1468-y |
_version_ | 1782444303104081920 |
---|---|
author | Bogaarts, J. G. Gommer, E. D. Hilkman, D. M. W. van Kranen-Mastenbroek, V. H. J. M. Reulen, J. P. H. |
author_facet | Bogaarts, J. G. Gommer, E. D. Hilkman, D. M. W. van Kranen-Mastenbroek, V. H. J. M. Reulen, J. P. H. |
author_sort | Bogaarts, J. G. |
collection | PubMed |
description | Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has been published regarding optimal training dataset composition for patient-independent seizure detection. This paper evaluates the performance of classifiers trained on different datasets in order to determine the optimal dataset for use in classifier training for automated, age-independent, seizure detection. Three datasets are used to train a support vector machine (SVM) classifier: (1) EEG from neonatal patients, (2) EEG from adult patients and (3) EEG from both neonates and adults. To correct for baseline EEG feature differences among patients feature, normalization is essential. Usually dedicated detection systems are developed for either neonatal or adult patients. Normalization might allow for the development of a single seizure detection system for patients irrespective of their age. Two classifier versions are trained on all three datasets: one with feature normalization and one without. This gives us six different classifiers to evaluate using both the neonatal and adults test sets. As a performance measure, the area under the receiver operating characteristics curve (AUC) is used. With application of FBC, it resulted in performance values of 0.90 and 0.93 for neonatal and adult seizure detection, respectively. For neonatal seizure detection, the classifier trained on EEG from adult patients performed significantly worse compared to both the classifier trained on EEG data from neonatal patients and the classier trained on both neonatal and adult EEG data. For adult seizure detection, optimal performance was achieved by either the classifier trained on adult EEG data or the classifier trained on both neonatal and adult EEG data. Our results show that age-independent seizure detection is possible by training one classifier on EEG data from both neonatal and adult patients. Furthermore, our results indicate that for accurate age-independent seizure detection, it is important that EEG data from each age category are used for classifier training. This is particularly important for neonatal seizure detection. Our results underline the under-appreciated importance of training dataset composition with respect to accurate age-independent seizure detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11517-016-1468-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4958398 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-49583982016-08-04 Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection Bogaarts, J. G. Gommer, E. D. Hilkman, D. M. W. van Kranen-Mastenbroek, V. H. J. M. Reulen, J. P. H. Med Biol Eng Comput Original Article Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has been published regarding optimal training dataset composition for patient-independent seizure detection. This paper evaluates the performance of classifiers trained on different datasets in order to determine the optimal dataset for use in classifier training for automated, age-independent, seizure detection. Three datasets are used to train a support vector machine (SVM) classifier: (1) EEG from neonatal patients, (2) EEG from adult patients and (3) EEG from both neonates and adults. To correct for baseline EEG feature differences among patients feature, normalization is essential. Usually dedicated detection systems are developed for either neonatal or adult patients. Normalization might allow for the development of a single seizure detection system for patients irrespective of their age. Two classifier versions are trained on all three datasets: one with feature normalization and one without. This gives us six different classifiers to evaluate using both the neonatal and adults test sets. As a performance measure, the area under the receiver operating characteristics curve (AUC) is used. With application of FBC, it resulted in performance values of 0.90 and 0.93 for neonatal and adult seizure detection, respectively. For neonatal seizure detection, the classifier trained on EEG from adult patients performed significantly worse compared to both the classifier trained on EEG data from neonatal patients and the classier trained on both neonatal and adult EEG data. For adult seizure detection, optimal performance was achieved by either the classifier trained on adult EEG data or the classifier trained on both neonatal and adult EEG data. Our results show that age-independent seizure detection is possible by training one classifier on EEG data from both neonatal and adult patients. Furthermore, our results indicate that for accurate age-independent seizure detection, it is important that EEG data from each age category are used for classifier training. This is particularly important for neonatal seizure detection. Our results underline the under-appreciated importance of training dataset composition with respect to accurate age-independent seizure detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11517-016-1468-y) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2016-03-31 2016 /pmc/articles/PMC4958398/ /pubmed/27032931 http://dx.doi.org/10.1007/s11517-016-1468-y Text en © The Author(s) 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Original Article Bogaarts, J. G. Gommer, E. D. Hilkman, D. M. W. van Kranen-Mastenbroek, V. H. J. M. Reulen, J. P. H. Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title | Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title_full | Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title_fullStr | Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title_full_unstemmed | Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title_short | Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection |
title_sort | optimal training dataset composition for svm-based, age-independent, automated epileptic seizure detection |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958398/ https://www.ncbi.nlm.nih.gov/pubmed/27032931 http://dx.doi.org/10.1007/s11517-016-1468-y |
work_keys_str_mv | AT bogaartsjg optimaltrainingdatasetcompositionforsvmbasedageindependentautomatedepilepticseizuredetection AT gommered optimaltrainingdatasetcompositionforsvmbasedageindependentautomatedepilepticseizuredetection AT hilkmandmw optimaltrainingdatasetcompositionforsvmbasedageindependentautomatedepilepticseizuredetection AT vankranenmastenbroekvhjm optimaltrainingdatasetcompositionforsvmbasedageindependentautomatedepilepticseizuredetection AT reulenjph optimaltrainingdatasetcompositionforsvmbasedageindependentautomatedepilepticseizuredetection |