Cargando…
Optimal training dataset composition for SVM-based, age-independent, automated epileptic seizure detection
Automated seizure detection is a valuable asset to health professionals, which makes adequate treatment possible in order to minimize brain damage. Most research focuses on two separate aspects of automated seizure detection: EEG feature computation and classification methods. Little research has be...
Autores principales: | Bogaarts, J. G., Gommer, E. D., Hilkman, D. M. W., van Kranen-Mastenbroek, V. H. J. M., Reulen, J. P. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958398/ https://www.ncbi.nlm.nih.gov/pubmed/27032931 http://dx.doi.org/10.1007/s11517-016-1468-y |
Ejemplares similares
-
Improved epileptic seizure detection combining dynamic feature normalization with EEG novelty detection
por: Bogaarts, J. G., et al.
Publicado: (2016) -
The Use of Continuous EEG Monitoring in Intensive Care Units in The Netherlands: A National Survey
por: Hilkman, Danny M. W., et al.
Publicado: (2018) -
The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic non‐epileptic seizures
por: Naganur, Vaidehi D., et al.
Publicado: (2019) -
Feature separation and adversarial training for the patient-independent detection of epileptic seizures
por: Yang, Yong, et al.
Publicado: (2023) -
Epileptic seizures
por: Anwar, Haleema, et al.
Publicado: (2020)