Cargando…

High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium

Automated methods are needed to facilitate high‐throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large‐scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the...

Descripción completa

Detalles Bibliográficos
Autores principales: Abubakar, Mustapha, Howat, William J, Daley, Frances, Zabaglo, Lila, McDuffus, Leigh‐Anne, Blows, Fiona, Coulson, Penny, Raza Ali, H, Benitez, Javier, Milne, Roger, Brenner, Herman, Stegmaier, Christa, Mannermaa, Arto, Chang‐Claude, Jenny, Rudolph, Anja, Sinn, Peter, Couch, Fergus J, Tollenaar, Rob A.E.M., Devilee, Peter, Figueroa, Jonine, Sherman, Mark E, Lissowska, Jolanta, Hewitt, Stephen, Eccles, Diana, Hooning, Maartje J, Hollestelle, Antoinette, WM Martens, John, HM van Deurzen, Carolien, Investigators, kConFab, Bolla, Manjeet K, Wang, Qin, Jones, Michael, Schoemaker, Minouk, Broeks, Annegien, van Leeuwen, Flora E, Van't Veer, Laura, Swerdlow, Anthony J, Orr, Nick, Dowsett, Mitch, Easton, Douglas, Schmidt, Marjanka K, Pharoah, Paul D, Garcia‐Closas, Montserrat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958735/
https://www.ncbi.nlm.nih.gov/pubmed/27499923
http://dx.doi.org/10.1002/cjp2.42
_version_ 1782444334643150848
author Abubakar, Mustapha
Howat, William J
Daley, Frances
Zabaglo, Lila
McDuffus, Leigh‐Anne
Blows, Fiona
Coulson, Penny
Raza Ali, H
Benitez, Javier
Milne, Roger
Brenner, Herman
Stegmaier, Christa
Mannermaa, Arto
Chang‐Claude, Jenny
Rudolph, Anja
Sinn, Peter
Couch, Fergus J
Tollenaar, Rob A.E.M.
Devilee, Peter
Figueroa, Jonine
Sherman, Mark E
Lissowska, Jolanta
Hewitt, Stephen
Eccles, Diana
Hooning, Maartje J
Hollestelle, Antoinette
WM Martens, John
HM van Deurzen, Carolien
Investigators, kConFab
Bolla, Manjeet K
Wang, Qin
Jones, Michael
Schoemaker, Minouk
Broeks, Annegien
van Leeuwen, Flora E
Van't Veer, Laura
Swerdlow, Anthony J
Orr, Nick
Dowsett, Mitch
Easton, Douglas
Schmidt, Marjanka K
Pharoah, Paul D
Garcia‐Closas, Montserrat
author_facet Abubakar, Mustapha
Howat, William J
Daley, Frances
Zabaglo, Lila
McDuffus, Leigh‐Anne
Blows, Fiona
Coulson, Penny
Raza Ali, H
Benitez, Javier
Milne, Roger
Brenner, Herman
Stegmaier, Christa
Mannermaa, Arto
Chang‐Claude, Jenny
Rudolph, Anja
Sinn, Peter
Couch, Fergus J
Tollenaar, Rob A.E.M.
Devilee, Peter
Figueroa, Jonine
Sherman, Mark E
Lissowska, Jolanta
Hewitt, Stephen
Eccles, Diana
Hooning, Maartje J
Hollestelle, Antoinette
WM Martens, John
HM van Deurzen, Carolien
Investigators, kConFab
Bolla, Manjeet K
Wang, Qin
Jones, Michael
Schoemaker, Minouk
Broeks, Annegien
van Leeuwen, Flora E
Van't Veer, Laura
Swerdlow, Anthony J
Orr, Nick
Dowsett, Mitch
Easton, Douglas
Schmidt, Marjanka K
Pharoah, Paul D
Garcia‐Closas, Montserrat
author_sort Abubakar, Mustapha
collection PubMed
description Automated methods are needed to facilitate high‐throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large‐scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37–0.87) and study (kappa range = 0.39–0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p‐value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000–4,500 cells: kappa = 0.78) than those with lower counts (50–500 cells: kappa = 0.41; p‐value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre‐ and post‐analytical quality control procedures are necessary in order to ensure satisfactory performance.
format Online
Article
Text
id pubmed-4958735
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49587352016-08-05 High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium Abubakar, Mustapha Howat, William J Daley, Frances Zabaglo, Lila McDuffus, Leigh‐Anne Blows, Fiona Coulson, Penny Raza Ali, H Benitez, Javier Milne, Roger Brenner, Herman Stegmaier, Christa Mannermaa, Arto Chang‐Claude, Jenny Rudolph, Anja Sinn, Peter Couch, Fergus J Tollenaar, Rob A.E.M. Devilee, Peter Figueroa, Jonine Sherman, Mark E Lissowska, Jolanta Hewitt, Stephen Eccles, Diana Hooning, Maartje J Hollestelle, Antoinette WM Martens, John HM van Deurzen, Carolien Investigators, kConFab Bolla, Manjeet K Wang, Qin Jones, Michael Schoemaker, Minouk Broeks, Annegien van Leeuwen, Flora E Van't Veer, Laura Swerdlow, Anthony J Orr, Nick Dowsett, Mitch Easton, Douglas Schmidt, Marjanka K Pharoah, Paul D Garcia‐Closas, Montserrat J Pathol Clin Res Original Articles Automated methods are needed to facilitate high‐throughput and reproducible scoring of Ki67 and other markers in breast cancer tissue microarrays (TMAs) in large‐scale studies. To address this need, we developed an automated protocol for Ki67 scoring and evaluated its performance in studies from the Breast Cancer Association Consortium. We utilized 166 TMAs containing 16,953 tumour cores representing 9,059 breast cancer cases, from 13 studies, with information on other clinical and pathological characteristics. TMAs were stained for Ki67 using standard immunohistochemical procedures, and scanned and digitized using the Ariol system. An automated algorithm was developed for the scoring of Ki67, and scores were compared to computer assisted visual (CAV) scores in a subset of 15 TMAs in a training set. We also assessed the correlation between automated Ki67 scores and other clinical and pathological characteristics. Overall, we observed good discriminatory accuracy (AUC = 85%) and good agreement (kappa = 0.64) between the automated and CAV scoring methods in the training set. The performance of the automated method varied by TMA (kappa range= 0.37–0.87) and study (kappa range = 0.39–0.69). The automated method performed better in satisfactory cores (kappa = 0.68) than suboptimal (kappa = 0.51) cores (p‐value for comparison = 0.005); and among cores with higher total nuclei counted by the machine (4,000–4,500 cells: kappa = 0.78) than those with lower counts (50–500 cells: kappa = 0.41; p‐value = 0.010). Among the 9,059 cases in this study, the correlations between automated Ki67 and clinical and pathological characteristics were found to be in the expected directions. Our findings indicate that automated scoring of Ki67 can be an efficient method to obtain good quality data across large numbers of TMAs from multicentre studies. However, robust algorithm development and rigorous pre‐ and post‐analytical quality control procedures are necessary in order to ensure satisfactory performance. John Wiley and Sons Inc. 2016-04-06 /pmc/articles/PMC4958735/ /pubmed/27499923 http://dx.doi.org/10.1002/cjp2.42 Text en © 2016 The Authors The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland and John Wiley & Sons Ltd This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Abubakar, Mustapha
Howat, William J
Daley, Frances
Zabaglo, Lila
McDuffus, Leigh‐Anne
Blows, Fiona
Coulson, Penny
Raza Ali, H
Benitez, Javier
Milne, Roger
Brenner, Herman
Stegmaier, Christa
Mannermaa, Arto
Chang‐Claude, Jenny
Rudolph, Anja
Sinn, Peter
Couch, Fergus J
Tollenaar, Rob A.E.M.
Devilee, Peter
Figueroa, Jonine
Sherman, Mark E
Lissowska, Jolanta
Hewitt, Stephen
Eccles, Diana
Hooning, Maartje J
Hollestelle, Antoinette
WM Martens, John
HM van Deurzen, Carolien
Investigators, kConFab
Bolla, Manjeet K
Wang, Qin
Jones, Michael
Schoemaker, Minouk
Broeks, Annegien
van Leeuwen, Flora E
Van't Veer, Laura
Swerdlow, Anthony J
Orr, Nick
Dowsett, Mitch
Easton, Douglas
Schmidt, Marjanka K
Pharoah, Paul D
Garcia‐Closas, Montserrat
High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title_full High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title_fullStr High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title_full_unstemmed High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title_short High‐throughput automated scoring of Ki67 in breast cancer tissue microarrays from the Breast Cancer Association Consortium
title_sort high‐throughput automated scoring of ki67 in breast cancer tissue microarrays from the breast cancer association consortium
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4958735/
https://www.ncbi.nlm.nih.gov/pubmed/27499923
http://dx.doi.org/10.1002/cjp2.42
work_keys_str_mv AT abubakarmustapha highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT howatwilliamj highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT daleyfrances highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT zabaglolila highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT mcduffusleighanne highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT blowsfiona highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT coulsonpenny highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT razaalih highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT benitezjavier highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT milneroger highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT brennerherman highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT stegmaierchrista highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT mannermaaarto highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT changclaudejenny highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT rudolphanja highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT sinnpeter highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT couchfergusj highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT tollenaarrobaem highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT devileepeter highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT figueroajonine highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT shermanmarke highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT lissowskajolanta highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT hewittstephen highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT ecclesdiana highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT hooningmaartjej highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT hollestelleantoinette highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT wmmartensjohn highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT hmvandeurzencarolien highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT investigatorskconfab highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT bollamanjeetk highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT wangqin highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT jonesmichael highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT schoemakerminouk highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT broeksannegien highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT vanleeuwenflorae highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT vantveerlaura highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT swerdlowanthonyj highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT orrnick highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT dowsettmitch highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT eastondouglas highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT schmidtmarjankak highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT pharoahpauld highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium
AT garciaclosasmontserrat highthroughputautomatedscoringofki67inbreastcancertissuemicroarraysfromthebreastcancerassociationconsortium