Cargando…
Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza
Traditional methods for monitoring influenza are haphazard and lack fine-grained details regarding the spatial and temporal dynamics of outbreaks. Twitter gives researchers and public health officials an opportunity to examine the spread of influenza in real-time and at multiple geographical scales....
Autores principales: | Allen, Chris, Tsou, Ming-Hsiang, Aslam, Anoshe, Nagel, Anna, Gawron, Jean-Mark |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959719/ https://www.ncbi.nlm.nih.gov/pubmed/27455108 http://dx.doi.org/10.1371/journal.pone.0157734 |
Ejemplares similares
-
The Reliability of Tweets as a Supplementary Method of Seasonal Influenza Surveillance
por: Aslam, Anoshé A, et al.
Publicado: (2014) -
Machine Learning Classifiers for Twitter Surveillance of Vaping: Comparative Machine Learning Study
por: Visweswaran, Shyam, et al.
Publicado: (2020) -
Influenza-Like Illness Surveillance on Twitter through Automated Learning of Naïve Language
por: Gesualdo, Francesco, et al.
Publicado: (2013) -
Regional level influenza study based on Twitter and machine learning method
por: Xue, Hongxin, et al.
Publicado: (2019) -
Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis
Patterns and their Impact on Surveillance Estimates
por: Mowery, Jared
Publicado: (2016)