Cargando…
Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts
PURPOSE: Diffusion tensor imaging (DTI) enables in vivo reconstruction of white matter (WM) pathways. Considering the emergence of numerous models and fiber tracking techniques, we herein aimed to compare, both quantitatively and qualitatively, the fiber tracking results of four DTI software (Braina...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959946/ https://www.ncbi.nlm.nih.gov/pubmed/27489869 http://dx.doi.org/10.1016/j.ejro.2016.06.002 |
_version_ | 1782444463270920192 |
---|---|
author | Christidi, Foteini Karavasilis, Efstratios Samiotis, Kostantinos Bisdas, Sotirios Papanikolaou, Nikolaos |
author_facet | Christidi, Foteini Karavasilis, Efstratios Samiotis, Kostantinos Bisdas, Sotirios Papanikolaou, Nikolaos |
author_sort | Christidi, Foteini |
collection | PubMed |
description | PURPOSE: Diffusion tensor imaging (DTI) enables in vivo reconstruction of white matter (WM) pathways. Considering the emergence of numerous models and fiber tracking techniques, we herein aimed to compare, both quantitatively and qualitatively, the fiber tracking results of four DTI software (Brainance, Philips FiberTrak, DSI Studio, NordicICE) on the reconstruction of representative WM tracts. MATERIALS AND METHODS: Ten healthy participants underwent 30-directional diffusion tensor imaging on a 3T-Philips Achieva TX MR-scanner. All data were analyzed by two independent sites of experienced raters with the aforementioned software and the following WM tracts were reconstructed: corticospinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); cingulum bundle (CB); superior longitudinal fasciculus (SLF); inferior fronto-occipital fasciculus (IFOF). Visual inspection of the resulted tracts and statistical analysis (inter-rater and betweensoftware agreement; paired t-test) on fractional anisotropy (FA), axial and radial diffusivity (Daxial, Dradial) were applied for qualitative and quantitative evaluation of DTI software results. RESULTS: Qualitative evaluation of the extracted tracts confirmed anatomical landmarks at least for the core part of each tract, even though differences in the number of fibers extracted and the whole tract were evident, especially for the CST, Fmajor, Fminor and SLF. Descriptive values did not deviate from the expected range of values for healthy adult population. Substantial inter-rater agreement (intraclass correlation coefficient [ICC], Bland-Altman analysis) was found for all tracts (ICC; FA: 0.839–0.989, Daxial: 0.704–0.991, Dradial: 0.972–0.993). Low agreement for FA, Daxial and Dradial (ICC; Bland-Altman analysis) and significant paired t-test differences (p < 0.05) were detected regarding between-software agreement. CONCLUSIONS: Qualitative comparison of four different DTI software in addition to substantial inter-rater but poor between-software agreement highlight the differences on existing fiber tracking methodologies and several particularities of each WM tract, further supporting the need for further study in both clinical and research settings. |
format | Online Article Text |
id | pubmed-4959946 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-49599462016-08-03 Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts Christidi, Foteini Karavasilis, Efstratios Samiotis, Kostantinos Bisdas, Sotirios Papanikolaou, Nikolaos Eur J Radiol Open Article PURPOSE: Diffusion tensor imaging (DTI) enables in vivo reconstruction of white matter (WM) pathways. Considering the emergence of numerous models and fiber tracking techniques, we herein aimed to compare, both quantitatively and qualitatively, the fiber tracking results of four DTI software (Brainance, Philips FiberTrak, DSI Studio, NordicICE) on the reconstruction of representative WM tracts. MATERIALS AND METHODS: Ten healthy participants underwent 30-directional diffusion tensor imaging on a 3T-Philips Achieva TX MR-scanner. All data were analyzed by two independent sites of experienced raters with the aforementioned software and the following WM tracts were reconstructed: corticospinal tract (CST); forceps major (Fmajor); forceps minor (Fminor); cingulum bundle (CB); superior longitudinal fasciculus (SLF); inferior fronto-occipital fasciculus (IFOF). Visual inspection of the resulted tracts and statistical analysis (inter-rater and betweensoftware agreement; paired t-test) on fractional anisotropy (FA), axial and radial diffusivity (Daxial, Dradial) were applied for qualitative and quantitative evaluation of DTI software results. RESULTS: Qualitative evaluation of the extracted tracts confirmed anatomical landmarks at least for the core part of each tract, even though differences in the number of fibers extracted and the whole tract were evident, especially for the CST, Fmajor, Fminor and SLF. Descriptive values did not deviate from the expected range of values for healthy adult population. Substantial inter-rater agreement (intraclass correlation coefficient [ICC], Bland-Altman analysis) was found for all tracts (ICC; FA: 0.839–0.989, Daxial: 0.704–0.991, Dradial: 0.972–0.993). Low agreement for FA, Daxial and Dradial (ICC; Bland-Altman analysis) and significant paired t-test differences (p < 0.05) were detected regarding between-software agreement. CONCLUSIONS: Qualitative comparison of four different DTI software in addition to substantial inter-rater but poor between-software agreement highlight the differences on existing fiber tracking methodologies and several particularities of each WM tract, further supporting the need for further study in both clinical and research settings. Elsevier 2016-07-18 /pmc/articles/PMC4959946/ /pubmed/27489869 http://dx.doi.org/10.1016/j.ejro.2016.06.002 Text en © 2016 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Christidi, Foteini Karavasilis, Efstratios Samiotis, Kostantinos Bisdas, Sotirios Papanikolaou, Nikolaos Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title | Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title_full | Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title_fullStr | Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title_full_unstemmed | Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title_short | Fiber tracking: A qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
title_sort | fiber tracking: a qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4959946/ https://www.ncbi.nlm.nih.gov/pubmed/27489869 http://dx.doi.org/10.1016/j.ejro.2016.06.002 |
work_keys_str_mv | AT christidifoteini fibertrackingaqualitativeandquantitativecomparisonbetweenfourdifferentsoftwaretoolsonthereconstructionofmajorwhitemattertracts AT karavasilisefstratios fibertrackingaqualitativeandquantitativecomparisonbetweenfourdifferentsoftwaretoolsonthereconstructionofmajorwhitemattertracts AT samiotiskostantinos fibertrackingaqualitativeandquantitativecomparisonbetweenfourdifferentsoftwaretoolsonthereconstructionofmajorwhitemattertracts AT bisdassotirios fibertrackingaqualitativeandquantitativecomparisonbetweenfourdifferentsoftwaretoolsonthereconstructionofmajorwhitemattertracts AT papanikolaounikolaos fibertrackingaqualitativeandquantitativecomparisonbetweenfourdifferentsoftwaretoolsonthereconstructionofmajorwhitemattertracts |