Cargando…

Viewing biodiversity through the lens of science…and art!

With global environmental sustainability at the crossroads, approaches are needed to build an ecologically literate culture for collective societal navigation through the intricacies of swift environmental change. This paper demonstrates a transdisciplinary approach, grounded at the intersection bet...

Descripción completa

Detalles Bibliográficos
Autor principal: Angeler, David G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960079/
https://www.ncbi.nlm.nih.gov/pubmed/27512633
http://dx.doi.org/10.1186/s40064-016-2831-z
Descripción
Sumario:With global environmental sustainability at the crossroads, approaches are needed to build an ecologically literate culture for collective societal navigation through the intricacies of swift environmental change. This paper demonstrates a transdisciplinary approach, grounded at the intersection between the arts and sciences, to increase awareness and understanding of the current biodiversity crisis. It focuses on one aspect of biodiversity, beta diversity, which examines how sets of animal and plant species differ between habitats. Theory and real examples of beta diversity of aquatic animal and plant species from dried-out ponds in Mediterranean Spain are presented in pixelized visuals. These visuals are artistic expression of and build the prior knowledge about beta diversity, which is scrutinized subsequently with statistical analyses to support the artistic approach with an objectively identified and numerically underpinned presentation of structure in the visuals. The choice to examine beta diversity in theory and reality first through art and then through science is deliberate. Combined, these aspects examine biodiversity through an eco-centric, rather than a species- and habitat centric view, incorporate elements of surprise (how can aquatic species in dry ecosystems survive), and reduce uncertainty (by providing a common numerical yardstick for interpreting the visuals). Together they can optimize a goal-directed learning process in the viewers necessary for making judgments, inducing affective reactions, and facilitating memory and decision making. The approach presented here provides an integral qualitative and quantitative model useful for a broader inductive-deductive education process towards finding sustainable solutions as our planet moves swiftly to a future without historical analogue. Combined art-sciences approaches, as the one presented here, are useful to facilitate citizens’ comprehension of the scientific and potential policy dimensions of environmental change, including biodiversity problems, especially because it is the general public that bears the costs of transformation and adaptation measures.