Cargando…

Non-stationary component extraction in noisy multicomponent signal using polynomial chirping Fourier transform

Inspired by track-before-detection technology in radar, a novel time–frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Wenlong, Xie, Junwei, Wang, Heming, Sheng, Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960086/
https://www.ncbi.nlm.nih.gov/pubmed/27512636
http://dx.doi.org/10.1186/s40064-016-2849-2
Descripción
Sumario:Inspired by track-before-detection technology in radar, a novel time–frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time–frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time–frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time–frequency details about the analyzed signal than conventional methods.