Cargando…
Collective Influence Algorithm to find influencers via optimal percolation in massively large social media
We elaborate on a linear-time implementation of Collective-Influence (CI) algorithm introduced by Morone, Makse, Nature 524, 65 (2015) to find the minimal set of influencers in networks via optimal percolation. The computational complexity of CI is O(N log N) when removing nodes one-by-one, made pos...
Autores principales: | Morone, Flaviano, Min, Byungjoon, Bo, Lin, Mari, Romain, Makse, Hernán A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960527/ https://www.ncbi.nlm.nih.gov/pubmed/27455878 http://dx.doi.org/10.1038/srep30062 |
Ejemplares similares
-
Finding influential nodes for integration in brain networks using optimal percolation theory
por: Del Ferraro, Gino, et al.
Publicado: (2018) -
Publisher Correction: Finding influential nodes for integration in brain networks using optimal percolation theory
por: Del Ferraro, Gino, et al.
Publicado: (2018) -
Collective Influence of Multiple Spreaders Evaluated by Tracing Real Information Flow in Large-Scale Social Networks
por: Teng, Xian, et al.
Publicado: (2016) -
Efficient collective influence maximization in cascading processes with first-order transitions
por: Pei, Sen, et al.
Publicado: (2017) -
Symmetry group factorization reveals the structure-function relation in the neural connectome of Caenorhabditis elegans
por: Morone, Flaviano, et al.
Publicado: (2019)