Cargando…
Fully automated macromolecule suppressed single voxel glutamate spectroscopy (FAMOUS SVGS)
PURPOSE: The aim of the study was to develop and validate a new localized (1)H MRS pulse sequence and automated post-processing software for the quantification of brain Glutamate (Glu) in clinical conditions at 7.0T in order to get reliable and reproducible results for acute intervention studies. ME...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4960747/ https://www.ncbi.nlm.nih.gov/pubmed/27456699 http://dx.doi.org/10.1186/s12967-016-0970-1 |
Sumario: | PURPOSE: The aim of the study was to develop and validate a new localized (1)H MRS pulse sequence and automated post-processing software for the quantification of brain Glutamate (Glu) in clinical conditions at 7.0T in order to get reliable and reproducible results for acute intervention studies. METHODS: Here we describe a new localized proton MRS method “Fully Automated MacrOmolecUle Suppressed Single Voxel Glutamate Spectroscopy (FAMOUS SVGS)” for measuring Glu. FAMOUS SVGS method consists of a new pulse sequence with optimized switchable water, metabolites and outer volume suppression modules, as well as a frequency selective inversion pulse and automated post-processing of the five spectra obtained. FAMOUS SVGS method was first validated with glutamate phantoms and then validated with test–retest repeatability studies in the occipital cortex of five normal volunteers at 7.0T. RESULTS: Glutamate concentrations estimated from phantoms with FAMOUS SVGS method correlated well with actual concentrations. Test–retest repeatability studies in human brain in vivo yielded less than 0.3 mM intra-subject variations in Glu concentrations. CONCLUSIONS: FAMOUS SVGS method enables Glu quantification in vivo at 7.0T with test–retest variability of less than 0.3 mM. We expect that we can reliably measure ≥0.5 mM change in glutamate due to any acute intervention. |
---|