Cargando…

The Effect of Bone Marrow Mononuclear Cells on Lung Regeneration and Apoptosis in a Simple Model of Pulmonary Emphysema

BACKGROUND: In severe chronic stages of emphysema the only treatment is lung transplantation. SO, an urgent need exists for the development of effective treatments. Stem cells therapy arises as a new therapeutic approach. AIM OF THE WORK: To investigate whether bone marrow mononuclar cells (BMMNCs)...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Badrawy, Mohammad K., Shalabi, Nesrien M., Mohamed, Mie A., Ragab, Amany, Abdelwahab, Heba Wagih, Anber, Nahla, Sobh, Mohamed A., Khater, Yomna, Abdel Hamid, Aziza A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Stem Cell Research 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961114/
https://www.ncbi.nlm.nih.gov/pubmed/27426096
http://dx.doi.org/10.15283/ijsc.2016.9.1.145
Descripción
Sumario:BACKGROUND: In severe chronic stages of emphysema the only treatment is lung transplantation. SO, an urgent need exists for the development of effective treatments. Stem cells therapy arises as a new therapeutic approach. AIM OF THE WORK: To investigate whether bone marrow mononuclar cells (BMMNCs) can promote lung regeneration and decrease apoptosis in lipopolysaccharide (LPS) induced pulmonary emphysema in C57Bl/6 mice. MATERIAL AND METHODS: 14 weeks old female mice (C57Bl/6), weighing around 25 g were used in this study. The mice were divided into 4 groups (10 in each group): group A: mice received no treatment, group B: mice received intranasal instillation of LPS with no further treatment, group C: mice received intranasal instillation of LPS then given a dose of BMMNCs and evaluated 21 days later and group D: the mice that received intranasal instillation of LPS then given a dose of Dulbecco’s Modified Eagle’s Medium (DMEM) and evaluated 21 days later. Imaging analysis was done using imagej program. To measure apoptotic index, Anti–caspase 3 polyclonal antibody staining was done. RESULTS: Analysis of the mean of airspace equivalent diameters (D0) and its statistical distribution (D1) for the different groups allowed to observe that group treated with BMMNCs (group C) showed the significant improvement in D0 and D1 than the group received LPS only (group B). Analysis of apoptotic index showed significant difference between BMMNCs treated group (group C) and that received LPS only (group B). CONCLUSIONS: BMMNCs effectively promote lung regeneration and reduction of apoptosis in pulmonary emphysema.