Cargando…
Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling
Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires’ disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961411/ https://www.ncbi.nlm.nih.gov/pubmed/27459495 http://dx.doi.org/10.1371/journal.pone.0159698 |
_version_ | 1782444668116533248 |
---|---|
author | Campodonico, Eva M. Roy, Craig R. Ninio, Shira |
author_facet | Campodonico, Eva M. Roy, Craig R. Ninio, Shira |
author_sort | Campodonico, Eva M. |
collection | PubMed |
description | Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires’ disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER)-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment. |
format | Online Article Text |
id | pubmed-4961411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-49614112016-08-08 Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling Campodonico, Eva M. Roy, Craig R. Ninio, Shira PLoS One Research Article Legionella pneumophila is a Gram-negative bacterium that can colonize both freshwater protozoa and human alveolar macrophages, the latter infection resulting in Legionnaires’ disease. The intracellular lifecycle of L. pneumophila requires extensive manipulation of its host cell, which is carried out by effector proteins that are translocated into the host cell through the Dot/Icm type IV secretion system. This study focuses on a pair of highly similar type IV substrates called YlfA/LegC7 and YlfB/LegC2 that were initially identified in a screen for proteins that cause growth inhibition in yeast. Analysis of truncation mutants revealed that the hydrophobic residues in the Ylf amino termini were required for localization of each protein to the membranes of host cells. Central and carboxy terminal coiled coil domains were found to mediate binding of YlfA and YlfB to themselves and to each other. In vivo, a ΔylfA ΔylfB double mutant strain of L. pneumophila was shown to be defective in establishing a vacuole that supports bacterial replication. This phenotype was subsequently correlated with a decrease in the association of endoplasmic reticulum (ER)-derived vesicles with vacuoles containing ΔylfA ΔylfB mutant bacteria. These data suggest that the Ylf proteins are membrane-associated effectors that enhance remodeling of the L. pneumophila -containing vacuole by promoting association and possibly fusion of ER-derived membrane vesicles with the bacterial compartment. Public Library of Science 2016-07-26 /pmc/articles/PMC4961411/ /pubmed/27459495 http://dx.doi.org/10.1371/journal.pone.0159698 Text en © 2016 Campodonico et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Campodonico, Eva M. Roy, Craig R. Ninio, Shira Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title | Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title_full | Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title_fullStr | Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title_full_unstemmed | Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title_short | Legionella pneumophila Type IV Effectors YlfA and YlfB Are SNARE-Like Proteins that Form Homo- and Heteromeric Complexes and Enhance the Efficiency of Vacuole Remodeling |
title_sort | legionella pneumophila type iv effectors ylfa and ylfb are snare-like proteins that form homo- and heteromeric complexes and enhance the efficiency of vacuole remodeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961411/ https://www.ncbi.nlm.nih.gov/pubmed/27459495 http://dx.doi.org/10.1371/journal.pone.0159698 |
work_keys_str_mv | AT campodonicoevam legionellapneumophilatypeiveffectorsylfaandylfbaresnarelikeproteinsthatformhomoandheteromericcomplexesandenhancetheefficiencyofvacuoleremodeling AT roycraigr legionellapneumophilatypeiveffectorsylfaandylfbaresnarelikeproteinsthatformhomoandheteromericcomplexesandenhancetheefficiencyofvacuoleremodeling AT ninioshira legionellapneumophilatypeiveffectorsylfaandylfbaresnarelikeproteinsthatformhomoandheteromericcomplexesandenhancetheefficiencyofvacuoleremodeling |