Cargando…

Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis

The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with thre...

Descripción completa

Detalles Bibliográficos
Autores principales: Shakeel, Shabih, Westerhuis, Brenda M., Domanska, Ausra, Koning, Roman I., Matadeen, Rishi, Koster, Abraham J., Bakker, Arjen Q., Beaumont, Tim, Wolthers, Katja C., Butcher, Sarah J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961769/
https://www.ncbi.nlm.nih.gov/pubmed/27435188
http://dx.doi.org/10.1038/ncomms11387
_version_ 1782444704289259520
author Shakeel, Shabih
Westerhuis, Brenda M.
Domanska, Ausra
Koning, Roman I.
Matadeen, Rishi
Koster, Abraham J.
Bakker, Arjen Q.
Beaumont, Tim
Wolthers, Katja C.
Butcher, Sarah J.
author_facet Shakeel, Shabih
Westerhuis, Brenda M.
Domanska, Ausra
Koning, Roman I.
Matadeen, Rishi
Koster, Abraham J.
Bakker, Arjen Q.
Beaumont, Tim
Wolthers, Katja C.
Butcher, Sarah J.
author_sort Shakeel, Shabih
collection PubMed
description The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA–protein interactions and dissection of virus assembly on the basis of RNA nucleation.
format Online
Article
Text
id pubmed-4961769
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49617692016-09-06 Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis Shakeel, Shabih Westerhuis, Brenda M. Domanska, Ausra Koning, Roman I. Matadeen, Rishi Koster, Abraham J. Bakker, Arjen Q. Beaumont, Tim Wolthers, Katja C. Butcher, Sarah J. Nat Commun Article The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1's hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA–protein interactions and dissection of virus assembly on the basis of RNA nucleation. Nature Publishing Group 2016-07-20 /pmc/articles/PMC4961769/ /pubmed/27435188 http://dx.doi.org/10.1038/ncomms11387 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Shakeel, Shabih
Westerhuis, Brenda M.
Domanska, Ausra
Koning, Roman I.
Matadeen, Rishi
Koster, Abraham J.
Bakker, Arjen Q.
Beaumont, Tim
Wolthers, Katja C.
Butcher, Sarah J.
Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title_full Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title_fullStr Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title_full_unstemmed Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title_short Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
title_sort multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961769/
https://www.ncbi.nlm.nih.gov/pubmed/27435188
http://dx.doi.org/10.1038/ncomms11387
work_keys_str_mv AT shakeelshabih multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT westerhuisbrendam multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT domanskaausra multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT koningromani multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT matadeenrishi multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT kosterabrahamj multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT bakkerarjenq multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT beaumonttim multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT woltherskatjac multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis
AT butchersarahj multiplecapsidstabilizinginteractionsrevealedinahighresolutionstructureofanemergingpicornaviruscausingneonatalsepsis