Cargando…

Glycolytic regulation of cell rearrangement in angiogenesis

During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It...

Descripción completa

Detalles Bibliográficos
Autores principales: Cruys, Bert, Wong, Brian W., Kuchnio, Anna, Verdegem, Dries, Cantelmo, Anna Rita, Conradi, Lena-Christin, Vandekeere, Saar, Bouché, Ann, Cornelissen, Ivo, Vinckier, Stefan, Merks, Roeland M. H., Dejana, Elisabetta, Gerhardt, Holger, Dewerchin, Mieke, Bentley, Katie, Carmeliet, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961802/
https://www.ncbi.nlm.nih.gov/pubmed/27436424
http://dx.doi.org/10.1038/ncomms12240
_version_ 1782444708565352448
author Cruys, Bert
Wong, Brian W.
Kuchnio, Anna
Verdegem, Dries
Cantelmo, Anna Rita
Conradi, Lena-Christin
Vandekeere, Saar
Bouché, Ann
Cornelissen, Ivo
Vinckier, Stefan
Merks, Roeland M. H.
Dejana, Elisabetta
Gerhardt, Holger
Dewerchin, Mieke
Bentley, Katie
Carmeliet, Peter
author_facet Cruys, Bert
Wong, Brian W.
Kuchnio, Anna
Verdegem, Dries
Cantelmo, Anna Rita
Conradi, Lena-Christin
Vandekeere, Saar
Bouché, Ann
Cornelissen, Ivo
Vinckier, Stefan
Merks, Roeland M. H.
Dejana, Elisabetta
Gerhardt, Holger
Dewerchin, Mieke
Bentley, Katie
Carmeliet, Peter
author_sort Cruys, Bert
collection PubMed
description During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases.
format Online
Article
Text
id pubmed-4961802
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-49618022016-09-06 Glycolytic regulation of cell rearrangement in angiogenesis Cruys, Bert Wong, Brian W. Kuchnio, Anna Verdegem, Dries Cantelmo, Anna Rita Conradi, Lena-Christin Vandekeere, Saar Bouché, Ann Cornelissen, Ivo Vinckier, Stefan Merks, Roeland M. H. Dejana, Elisabetta Gerhardt, Holger Dewerchin, Mieke Bentley, Katie Carmeliet, Peter Nat Commun Article During vessel sprouting, endothelial cells (ECs) dynamically rearrange positions in the sprout to compete for the tip position. We recently identified a key role for the glycolytic activator PFKFB3 in vessel sprouting by regulating cytoskeleton remodelling, migration and tip cell competitiveness. It is, however, unknown how glycolysis regulates EC rearrangement during vessel sprouting. Here we report that computational simulations, validated by experimentation, predict that glycolytic production of ATP drives EC rearrangement by promoting filopodia formation and reducing intercellular adhesion. Notably, the simulations correctly predicted that blocking PFKFB3 normalizes the disturbed EC rearrangement in high VEGF conditions, as occurs during pathological angiogenesis. This interdisciplinary study integrates EC metabolism in vessel sprouting, yielding mechanistic insight in the control of vessel sprouting by glycolysis, and suggesting anti-glycolytic therapy for vessel normalization in cancer and non-malignant diseases. Nature Publishing Group 2016-07-20 /pmc/articles/PMC4961802/ /pubmed/27436424 http://dx.doi.org/10.1038/ncomms12240 Text en Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Cruys, Bert
Wong, Brian W.
Kuchnio, Anna
Verdegem, Dries
Cantelmo, Anna Rita
Conradi, Lena-Christin
Vandekeere, Saar
Bouché, Ann
Cornelissen, Ivo
Vinckier, Stefan
Merks, Roeland M. H.
Dejana, Elisabetta
Gerhardt, Holger
Dewerchin, Mieke
Bentley, Katie
Carmeliet, Peter
Glycolytic regulation of cell rearrangement in angiogenesis
title Glycolytic regulation of cell rearrangement in angiogenesis
title_full Glycolytic regulation of cell rearrangement in angiogenesis
title_fullStr Glycolytic regulation of cell rearrangement in angiogenesis
title_full_unstemmed Glycolytic regulation of cell rearrangement in angiogenesis
title_short Glycolytic regulation of cell rearrangement in angiogenesis
title_sort glycolytic regulation of cell rearrangement in angiogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961802/
https://www.ncbi.nlm.nih.gov/pubmed/27436424
http://dx.doi.org/10.1038/ncomms12240
work_keys_str_mv AT cruysbert glycolyticregulationofcellrearrangementinangiogenesis
AT wongbrianw glycolyticregulationofcellrearrangementinangiogenesis
AT kuchnioanna glycolyticregulationofcellrearrangementinangiogenesis
AT verdegemdries glycolyticregulationofcellrearrangementinangiogenesis
AT cantelmoannarita glycolyticregulationofcellrearrangementinangiogenesis
AT conradilenachristin glycolyticregulationofcellrearrangementinangiogenesis
AT vandekeeresaar glycolyticregulationofcellrearrangementinangiogenesis
AT boucheann glycolyticregulationofcellrearrangementinangiogenesis
AT cornelissenivo glycolyticregulationofcellrearrangementinangiogenesis
AT vinckierstefan glycolyticregulationofcellrearrangementinangiogenesis
AT merksroelandmh glycolyticregulationofcellrearrangementinangiogenesis
AT dejanaelisabetta glycolyticregulationofcellrearrangementinangiogenesis
AT gerhardtholger glycolyticregulationofcellrearrangementinangiogenesis
AT dewerchinmieke glycolyticregulationofcellrearrangementinangiogenesis
AT bentleykatie glycolyticregulationofcellrearrangementinangiogenesis
AT carmelietpeter glycolyticregulationofcellrearrangementinangiogenesis