Cargando…

Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics

Recent studies have identified a predictable movement pattern of the common carotid artery wall in the longitudinal direction. While there is evidence that the magnitude of this carotid artery longitudinal wall motion (CALM) is sensitive to cardiovascular health status, little is known about the det...

Descripción completa

Detalles Bibliográficos
Autores principales: Au, Jason S., Ditor, David S., MacDonald, Maureen J., Stöhr, Eric J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962076/
https://www.ncbi.nlm.nih.gov/pubmed/27440745
http://dx.doi.org/10.14814/phy2.12872
_version_ 1782444762685505536
author Au, Jason S.
Ditor, David S.
MacDonald, Maureen J.
Stöhr, Eric J.
author_facet Au, Jason S.
Ditor, David S.
MacDonald, Maureen J.
Stöhr, Eric J.
author_sort Au, Jason S.
collection PubMed
description Recent studies have identified a predictable movement pattern of the common carotid artery wall in the longitudinal direction. While there is evidence that the magnitude of this carotid artery longitudinal wall motion (CALM) is sensitive to cardiovascular health status, little is known about the determinants of CALM. The purpose of this integrative study was to evaluate the contribution of left ventricular (LV) cardiac motion and local blood velocity to CALM. Simultaneous ultrasound measurements of CALM, common carotid artery mean blood velocity (MBV), and left ventricular motion were performed in ten young, healthy individuals (6 males; 22 ± 1 years). Peak anterograde CALM occurred at a similar time as peak MBV (18.57 ± 3.98% vs. 18.53 ± 2.81% cardiac cycle; t‐test: P = 0.94; ICC: 0.79, P < 0.01). The timing of maximum retrograde CALM displacement was different, but related, to both peak apical (41.00 ± 7.81% vs. 35.33 ± 5.79% cardiac cycle; t‐test: P < 0.01; ICC: 0.79, P < 0.01) and basal rotation (41.80 ± 6.12% vs. 37.30 ± 5.66% cardiac cycle; t‐test: P < 0.01; ICC: 0.74, P < 0.01) with peak cardiac displacements preceding peak CALM displacements in both cases. The association between basal rotation and retrograde CALM was further supported by strong correlations between their peak magnitudes (r = −0.70, P = 0.02), whereas the magnitude of septal longitudinal displacement was not associated with peak CALM (r = 0.11, P = 0.77). These results suggest that the rotational mechanical movement of the LV base may be closely associated with longitudinal mechanics in the carotid artery. This finding may have important implications for interpreting the complex relationship between ventricular and vascular function.
format Online
Article
Text
id pubmed-4962076
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-49620762016-08-05 Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics Au, Jason S. Ditor, David S. MacDonald, Maureen J. Stöhr, Eric J. Physiol Rep Original Research Recent studies have identified a predictable movement pattern of the common carotid artery wall in the longitudinal direction. While there is evidence that the magnitude of this carotid artery longitudinal wall motion (CALM) is sensitive to cardiovascular health status, little is known about the determinants of CALM. The purpose of this integrative study was to evaluate the contribution of left ventricular (LV) cardiac motion and local blood velocity to CALM. Simultaneous ultrasound measurements of CALM, common carotid artery mean blood velocity (MBV), and left ventricular motion were performed in ten young, healthy individuals (6 males; 22 ± 1 years). Peak anterograde CALM occurred at a similar time as peak MBV (18.57 ± 3.98% vs. 18.53 ± 2.81% cardiac cycle; t‐test: P = 0.94; ICC: 0.79, P < 0.01). The timing of maximum retrograde CALM displacement was different, but related, to both peak apical (41.00 ± 7.81% vs. 35.33 ± 5.79% cardiac cycle; t‐test: P < 0.01; ICC: 0.79, P < 0.01) and basal rotation (41.80 ± 6.12% vs. 37.30 ± 5.66% cardiac cycle; t‐test: P < 0.01; ICC: 0.74, P < 0.01) with peak cardiac displacements preceding peak CALM displacements in both cases. The association between basal rotation and retrograde CALM was further supported by strong correlations between their peak magnitudes (r = −0.70, P = 0.02), whereas the magnitude of septal longitudinal displacement was not associated with peak CALM (r = 0.11, P = 0.77). These results suggest that the rotational mechanical movement of the LV base may be closely associated with longitudinal mechanics in the carotid artery. This finding may have important implications for interpreting the complex relationship between ventricular and vascular function. John Wiley and Sons Inc. 2016-07-20 /pmc/articles/PMC4962076/ /pubmed/27440745 http://dx.doi.org/10.14814/phy2.12872 Text en © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. This is an open access article under the terms of the Creative Commons Attribution (http://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Research
Au, Jason S.
Ditor, David S.
MacDonald, Maureen J.
Stöhr, Eric J.
Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title_full Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title_fullStr Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title_full_unstemmed Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title_short Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
title_sort carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962076/
https://www.ncbi.nlm.nih.gov/pubmed/27440745
http://dx.doi.org/10.14814/phy2.12872
work_keys_str_mv AT aujasons carotidarterylongitudinalwallmotionisassociatedwithlocalbloodvelocityandleftventricularrotationalbutnotlongitudinalmechanics
AT ditordavids carotidarterylongitudinalwallmotionisassociatedwithlocalbloodvelocityandleftventricularrotationalbutnotlongitudinalmechanics
AT macdonaldmaureenj carotidarterylongitudinalwallmotionisassociatedwithlocalbloodvelocityandleftventricularrotationalbutnotlongitudinalmechanics
AT stohrericj carotidarterylongitudinalwallmotionisassociatedwithlocalbloodvelocityandleftventricularrotationalbutnotlongitudinalmechanics