Cargando…
Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014–2015)
[Image: see text] The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as...
Autores principales: | Ekins, Sean, Perryman, Alexander L., Clark, Alex M., Reynolds, Robert C., Freundlich, Joel S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2016
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4962118/ https://www.ncbi.nlm.nih.gov/pubmed/27335215 http://dx.doi.org/10.1021/acs.jcim.6b00004 |
Ejemplares similares
-
Looking
Back to the Future: Predicting in
Vivo Efficacy of Small Molecules versus Mycobacterium
tuberculosis
por: Ekins, Sean, et al.
Publicado: (2014) -
Pruned Machine Learning Models to Predict Aqueous
Solubility
por: Perryman, Alexander L., et al.
Publicado: (2020) -
Machine learning models identify molecules active against the Ebola virus
in vitro
por: Ekins, Sean, et al.
Publicado: (2017) -
Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models
por: Ekins, Sean, et al.
Publicado: (2013) -
Essential Metabolites of Mycobacterium tuberculosis and Their Mimics
por: Lamichhane, Gyanu, et al.
Publicado: (2011)